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FOREWORD

Finding Profitable Knowledge

The information revolution is generating mountains of data, from sources
as diverse as astronomy observations, credit card transactions, genetics re-
search, telephone calls, and web clickstreams. At the same time, faster and
cheaper storage technology allows us to store ever-greater amounts of data
online, and better DBMS software provides an easy access to those data-
bases. The web revolution is also expanding the focus of data mining be-
yond structured databases to the analysis of text, hyperlinked web pages,
images, sounds, movies and other multimedia data.

Mining financial data presents special challenges. For one, the rewards
for finding successful patterns are potentially enormous, but so are the diffi-
culties and sources of confusions. The efficient market theory states that it
is practically impossible to predict financial markets long-term. However,
there is good evidence that short-term trends do exist and programs can be
written to find them. The data miners' challenge is to find the trends quickly
while they are valid, as well as to recognize the time when the trends are no
longer effective.

Additional challenges of financial mining are to take into account the
abundance of domain knowledge that describes the intricately inter-related
world of global financial markets and to deal effectively with time series and
calendar effects. For example, Monday and Friday are known to usually
have different effects on S&P 500 than other days of the week.

The authors present a comprehensive overview of major algorithmic ap-
proaches to predictive data mining, including statistical, neural networks,
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rule-based, decision-tree, and fuzzy-logic methods and examine the suitabil-
ity of these approaches to financial data mining.

They focus especially on relational data mining, which is a learning
method able to learn more expressive rules than other symbolic approaches.
RDM is thus better suited for financial mining, because it is able to make
better use of underlying domain knowledge. Relational data mining also has
a better ability to explain the discovered rules -- ability critical for avoiding
spurious patterns which inevitably arise when the number of variables ex-
amined is very large. The earlier algorithms for relational data mining, also
known as ILP -- inductive logic programming, suffer from a well-known
inefficiency. The authors introduce a new approach, which combines rela-
tional data mining with the analysis of statistical significance of discovered
rules. This reduces the search space and speeds up the algorithms.

The authors also introduce a set of interactive tools for "mining" the
knowledge from the experts. This helps to further reduce the search space.

The authors' grand tour of the data mining methods contains a number of
practical examples of forecasting S&P 500 and exchange rates, and allows
interested readers to start building their own models. I expect that this book
will be a handy reference to many financially inclined data miners, who will
find the volume both interesting and profitable.

Gregory Piatetsky-Shapiro
Boston, Massachusetts



PREFACE

The new generation of computing techniques collectively called data
mining methods are now applied to stock market analysis, predictions, and
other financial applications. In this book we discuss the relative merits of
these methods for financial modeling and present a comprehensive survey of
current capabilities of these methods in financial analysis.

The focus is on the specific and highly topical issue of adaptive linear
and non-linear “mining” of financial data. Topics are progressively devel-
oped. First, we examine the distinction between the use of such methods as
ARIMA, neural networks, decision trees, Markov chains, hybrid know-
ledge-based neural networks, and hybrid relational methods. Later, we focus
on examining financial time series, and, finally, modeling and forecasting
these financial time series using data mining methods.

Our main purpose is to provide much needed guidance for applying new
predictive and decision-enhancing hybrid methods to financial tasks such as
capital-market investments, trading, banking services, and many others.

The very complex and challenging problem of forecasting financial time
series requires specific methods of data mining. We discuss these require-
ments and show the relations between problem requirements and the capa-
bilities of different methods. Relational data mining as a hybrid learning
method combines the strength of inductive logic programming (ILP) and
probabilistic inference to meet this challenge. A special feature of the book
is the large number of worked examples illustrating the theoretical concepts
discussed.

The book begins with problem definitions, modern methodologies of
general data mining and financial knowledge discovery, relations between
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data mining and database management, current practice, and intellectual
challenges in data mining.

Chapter 2 1s devoted to numerical data mining learning models and their
financial applications. We consider ARIMA models, Markov chains, in-
stance-based learning, neural networks, methods of learning from experts
(“expert” mining”), and new methods for testing the results of data mining.

Chapter 3 presents rule-based and hybrid data mining methods such as
learning prepositional rules (decision trees and DNF), extracting rules from
learned neural networks, learning probabilistic rules, and knowledge-based
stochastic modeling (Markov chains and hidden Markov models) in
finance.

Chapter 4 describes a new area of data mining and financial applications -
- relational data mining (RDM) methods. From our viewpoint, this approach
will play a key role in future advances in data mining methodology and
practice. Topics covered in this chapter include the relational data mining
paradigm and current challenges, theory, and algorithms (FOIL, FOCL and
MMDR).

Numerical relational data mining methods are especially important for
financial analysis where data commonly are numerical financial time series.
This subject is developed in chapters 4, 5 and 6 using complex data types
and representative measurement theory. The RDM paradigm is based on
highly expressive first-order logic language and inductive logic program-
ming. Chapters 5 and 6 cover knowledge representation and financial appli-
cations of RDM. Chapter 6 also discusses key performance issues of the se-
lected methods in forecasting financial time series. Chapter 7 presents fuzzy
logic methods combined with probabilistic methods, comparison of fuzzy
logic and probabilistic methods, and their financial applications.

Well-known and commonly used data mining methods in finance are at-
tribute-based learning methods such as neural networks, the nearest neigh-
bours method, and decision trees. These are relatively simple, efficient, and
can handle noisy data. However, these methods have two serious drawbacks:
a limited ability to represent background knowledge and the lack of complex
relations. The purpose of relational data mining is to overcome these limita-
tions. On the other hand, as Bratko and Muggleton noted [1995], current
relational methods (ILP methods) are relatively inefficient and have rather
limited facilities for handling numerical data. Biology, pharmacology, and
medicine have already benefited significantly from relational data mining.
We believe that now is the time for applying these methods to financial
analyses. This book is addressed to researchers, consultants, and students
interested in the application of mathematics to investment, economics, and
management. We also maintain a related website
http://www.cwu.edu/~borisk/finanace.
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Chapter 1
The scope and methods of the study

October. This is one of the peculiarly dangerous months to speculate in
stocks in. The others are July, January, September, April, November, May,
March, June, December, August and February

Mark Twain [1894]

1.1 Introduction

Mark Twain’s aphorism became increasingly popular in discussions
about a new generation of computing techniques called data mining (DM)
[Sullivan at al, 1998]. These techniques are now applied to discover hidden
trends and patterns in financial databases, e.g., in stock market data for
market prediction. The question in discussions is how to separate real
trends and patterns from mirages. Otherwise, it is equally dangerous to
follow any of them, as noted by Mark Twain more than hundred years ago.
This book is intended to address this issue by presenting different methods
without advocating any particular calendar dependency like the January
stock calendar effect. We use stock market data in this book because, in
contrast with other financial data, they are not proprietary and are well un-
derstood without extensive explanations.

Data mining draws from two major sources: database and machine
learning technologies [Fayyad, Piatetsky-Shapiro, Smyth, 1996]. The goal
of machine learning is to construct computer programs that automatically
improve with experience [Mitchell. 1997]. Detecting fraudulent credit card
transactions is one of the successful applications of machine learning. Many
others are known in finance and other areas [Mitchell, 1999].
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Friedman [1997] listed four major technological reasons stimulated data
mining development, applications, and public interest:

— the emergence of very large databases such as commercial data ware-
houses and computer automated data recording;

— advances in computer technology such as faster and bigger computer
engines and parallel architectures;

— fast access to vast amounts of data, and

— the ability to apply computationally intensive statistical methodology
to these data.

Currently the methods used in data mining range from classical statistical

methods to new inductive logic programming methods. This book intro-

duces data mining methods for financial analysis and forecasting. We over-

view Fundamental Analysis, Technical Analysis, Autoregression, Neural

Networks, Genetic Algorithms, k Nearest neighbours, Markov Chains, Deci-

sion Trees, Hybrid methods and Relational Data Mining (RDM).

Our emphasis is on Relational Data Mining in the financial analysis
and forecasting. Relational Data Mining combines recent advances in such
areas as Inductive Logic Programming (ILP), Probabilistic Inference,
and Representative Measurement Theory (RMT). Relational data mining
benefits from noise robust probabilistic inference and highly expressive and
understandable first-order logic rules employed in ILP and representative
measurement theory.

Because of the interdisciplinary nature of the material, this book makes
few assumptions about the background of the reader. Instead, it introduces
basic concepts as the need arises. Currently statistical and Artificial Neural
Network methods dominate in financial data mining. Alternative relational
(symbolic) data mining methods have shown their effectiveness in robot-
ics, drug design and other applications [Lavrak et al., 1997, Muggleton,
1999]

Traditionally symbolic methods are used in the areas with a lot of non-
numeric (symbolic) knowledge. In robot navigation, this is relative loca-
tion of obstacles (on the right, on the left and so on). At first glance, stock
market forecast looks as a pure numeric area irrelevant to symbolic methods.
One of our major goals is to show that financial time series can benefit sig-
nificantly from relational data mining based on symbolic methods.

Typically, general-purpose data mining and machine learning texts de-
scribe methods for very different tasks in the same text to show the broad
range of potential applications. We believe that an effective way to learn
about the relative strength of data mining methods is to view them from one
type of application. Through the book, we use the SP500 and other stock
market time series to show strength and weakness of different methods.
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The book is intended for researchers, consultants, and students interested
in the application of mathematics to investment, economics, and manage-
ment. The book can also serve as a reference work for those who are con-
ducting research in data mining.

12 Problem definition

Financial forecasting has been widely studied as a case of time-series
prediction problem. The difficulty of this problem is due to the following
factors: low signal-to-noise ratio, non-Gaussian noise distribution, nonsta-
tionarity, and nonlinearly [Oliker, 1997]. A variety of views exists on this
problem, in this book, we try to present a faithful summary ofthese works.

Deriving relationships that allow one to predict future values of time se-
ries is a challenging task when the underlying system is highly non-linear.
Usually, the history of the time series is provided and the goal is to extract
from that data a dynamic system. The dynamic system models the relation-
ship between a window of past values and a value T time steps ahead.

Discovering such a model is difficult in practice since the processes are
typically corrupted by noise and can only be partially modelled due to
missing information and the overall complexity of the problem. In addition,
financial time series are inherently non-stationary so adaptive forecasting
techniques are required.

Below in Tables 1.1-1.4 we present a list of typical task related to data
mining in finance [Loofbourrow and Loofbourrow, 1995].

Table 1.1. Data mining tasks for portfolio managers

Task and expected result Example

1. Early warning of positions that Filtering stocks for mutual fund portfolios using
neural networks (Fidelity Investment funds). The
neural network indicates stocks suitable for fur-
ther consideration. The system, retrained daily,
suggests consideration of 200-400 stocks instead

may be growing dangerous.
2. Automated choosing of securities
with certain desired characteris-

tics. of the initial 2000 stocks. There are about 100
3. Screening and selecting securities | input variables including stock prices, dividends,
faster and more accurately. historical earnings, balance sheet information,

and inputs from Fidelity analysts.

Various publications have estimated the use of data mining methods like
hybrid architectures of neural networks with genetic algorithms, chaos
theory, and fuzzy logic in finance. “Conservative estimates place about $5
billion to $10 billion under the direct management of neural network trad-
ing models. This amount is growing steadily as more firms experiment with
and gain confidence with neural networks techniques and methods” [Loof-
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bourrow & Loofbourrow, 1995]. Many other proprietary financial appli-
cations of data mining exist, but are not reported publicly [Von Altrock,
1997; Groth, 1998].

Table 1.2. Data mining tasks for trading manages and traders
Users Task and expected data mining result
Traders Early warning of changing trends.
Finding small patterns in the market, which might otherwise be lost in a
torrent of information.
Discovering the effects of one market on another.
Trading Improving overall performance of trading operations.
managers | Monitoring compliance of trading operations.
Improving the consistency of trading operations.

Table 1.3, Knowledge-based (symbolic) systems for trading managers

Task and expected result Difficulties Result

Compliance monitoring, Typically resolved Reported significant success
(signaling if portfolio manag- | during development. | (Putnam Funds, NYSE, Toronto
ers or traders try to trade Stock Exchange).

beyond allowed limits and
restrictions).

Table 1.4. Traditional knowledge-based (expert) systems for traders

Task and expected result Difficulties Result

1. Early warning of changing | Slowness of the Only few rules of trading work
trends. extraction of trading | consistently well across differ-
2. Finding small patterns in rules and their dy- ent kinds of markets, e.g., rules
the market. namic correction for | that work well for a bull market
3. Discovering the effects of | changing markets. may perform miserably in a
one market on another. bear market.

13 Data mining methodologies

1.3.1 Parameters

There are several parameters to characterize Data Mining methodologies
for financial forecasting:

1. Date types. There are two major groups of data types attributes or rela-
tions. Usually Data Mining methods follow an attribute-based ap-
proach, also called attribute-value approach. This approach covers a
wide range of statistical and connectionist (neural network) methods.
Less traditional relational methods based on relational data types are
presented in Chapters 4-6.
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2. Data set. Two major options exist: use the time series itself or use all
variables that may influence the evolution of the time series. Data Min-
ing methods do not restrict themselves to a particular option. They fol-
low a fundamental analysis approach incorporating all available attrib-
utes and their values, but they also do not exclude a technical analysis
approach, i.e., use only a financial time series itself.

3. Mathematical algorithm (method, model). A variety of statistical, neu-
ral network, and logical methods has been developed. For example, there
are many neural network models, based on different mathematical algo-
rithms, theories, and methodologies. Methods and their specific assump-
tions are presented in this book.

Combinations of different models may provide a better performance than

those provided by individuals [Wai Man Leung et al., 1997]. Often these

models are interpreted as trained “experts”, for example trained neural
networks [Dietterich, 1997], therefore combinations of these artificial ex-
perts (models) can be organized similar to a consultation of real human
experts. We discuss this issue in Section 3.1. Moreover, artificial experts
can be effectively combined with real experts in this consultation. Another
new terminology came from recent advances in Artificial Intelligence. These
experts are called intelligent agents [Russel, Norvig, 1995]. Even the next
level of hierarchy is offered “experts” learning from another already trained
artificial experts and human experts. We use the new term “expert mining”
as an umbrella term for extracting knowledge from “experts”. This issue is

covered in Sections 2.7 and 2.8.

Assumptions. Many data mining methods assume a functional form of
the relationship being modeled. For instance, the linear discriminant analysis
assumes linearity of the border, which discriminates between two classes in
the space of attributes. Relational Data Mining (RDM) algorithms (Chapters
4-6) do not assume a functional form for the relationship being modeled is
known in advance. In addition, RDM algorithms do not assume the exis-
tence of derivatives. RDM can automatically learn symbolic relations on
numerical data of financial time series.

Selection of a method for discovering regularities in financial time series
is a very complex task. Uncertainty of problem descriptions and method ca-
pabilities are among the most obvious difficulties in the process of selection.
We argue for relational data mining methods for financial applications using
the concept of dimensions developed by Dhar and Stein [1997a, 1997b],
This approach uses a specific set of terms to express advantages and disad-
vantages of different methods. In Table 1.7, RDM is evaluated using these
terms as well as some additional terms.

Bratko and Muggleton [1995] pointed out that attribute-based learners
typically only accept available (background) knowledge in rather limited
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form. In contrast relational learners support general representation for
background knowledge.

132 Problem ID and profile

Dhar and Stein [1997a,b] introduced and applied a unified vocabulary for
business computational intelligence problems and methods. A problem is
described using a set of desirable values (problem ID profile) and a
method is described using its capabilities in the same terms. Use of unified
terms (dimensions) for problems and methods allows us to compare alter-
native methods.

At first glance, such dimensions are not very helpful, because they are
vague. Different experts definitely may have different opinions about some
dimensions. However, there is consensus between experts about some criti-
cal dimensions such as the low explainability of neural networks. Recogni-
tion of the importance of introducing dimensions itself accelerates clarifica-
tion of these dimensions and can help to improve methods. Moreover, the
current trend in data mining shows that user prefer to operate completely in
terms specific to their own domain. For instance, users wish to send to the
data mining system a query like -- what are the characteristics of stocks with
the increased price? If the data mining method has a low capacity to explain
its discovery, this method is not desirable for that question. Next, users
should not be forced to spend time determining a method’s capabilities (val-
ues of dimensions for the method). This is a task for developers, but users
should be able to identify desirable values of dimensions using natural lan-
guage terms as suggested by Dhar and Stein.

Table 1.5. Comparison of model quality and resources

Dimension Desirable value for stock | Capability of neural
price forecast problem network method
Model Quality
Accuracy Moderate High *
Explainability Moderate to High Low
Response speed Moderate High
Ease to use logical relations* High Low
Ease to use numerical attributes High High
Quality of available resources

Tolerance for noise in data High Moderate to high
Tolerance for sparse data High Low
Tolerance for complexity** High High
Independence from experts Moderate High

* With comprehensive training data
** Tolerance for complexity is the degree to which the quality of a system is affected by in-
teractions among the various components of the process.
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Neural networks are the most common methods in financial market fore-
casting. Therefore, we begin for them. Table 1.5 indicates three shortages of
neural networks for stock price forecasting related to
1. explainability,

2. usage of logical relations and

3. tolerance for sparse data.

This table is based on the table from [Dhar, Stein, 1997b, p.234] and on our
additional feature—usage of logical relations. The last feature is an impor-
tant for comparison with ILP methods.

Table 1.6. Comparison of engineering and logistical dimensions

Dimension Desirable value for stock Capability of neural
price forecast problem network method
Quality of system engineering
Flexibility High* High
Scalability High Moderate
Compactness Moderatel 1 High
Embeddability High High
Independence from experts High High
Ease to use Moderate Moderate
Logistical constraints
Computing resources Low to Moderate Low
Development speed Moderate Moderate

* To be able to adjust to other stocks

Table 1.6 indicates a shortage of neural networks for this problem related
to scalability. High scalability means that a system can be relatively easy
scaled up to realistic environment from a research prototype. Flexibility
means that a system should be relatively easily updated to allow for new
investment instruments and financial strategies [Dhar, Stein, 1997a,b].

133 Comparison of intelligent decision support methods.

Table 1.7 compares different methods in terms of dimensions offered by
Dhar and Stein [1997a,b]. We added the gray part to show the importance of
relational first-order logic methods. The terms H, M, L represents high, me-
dium and low levels of the dimension respectively.

The abbreviations in the first row represent different methods. IBL
means instance-based learning, ILP means inductive logic programming,
PILP means probabilistic ILP, NN means neural networks, FL. means fuzzy
logic. Statistical methods (ARIMA and others) are denoted as ST, DT means
decision trees and DR means deductive reasoning (expert systems).
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Table 1.7. Comparison of capabilities of methods (adapted from [Dhar, Stein, 1997a,b

Dimension NN IBL |FL | DR | ST DT |
1 | Accuracy H' MH |H MH | MH
2 | Explainability I* M M |H |MH |MH
3 Response speed | H MH |[H LM |MH |H
4 Scalability M H M M | MH | MH
5 | Compactness H IM [H |L M
6 | Flexibility H* H H (M |LM |H
7 | Embeddability H M M L H MH
8 Tolerance for H M H L LM
complexity
9 | Tolerance for MH® [ M LM
noise in data
10 | Tolerance for L M L
sparse data
11 | Independence H MH |M |L H M
from experts
12 | Development M® M | M M
speed H
13 | Used computing | LM’ L M
resources
Ease of use

Comments for Table 1.7 ([Dhar, Stein, 1997a,b]).

' Needs comprehensive training data.

? Some methods exist for doing sensitivity analysis and rule extraction.

* Depends on complexity of problem, availability of data.

4 Needs representative training data.

5 Preprocessing is useful in dealing with noise.

§ Depends on understanding of process, on computer speed, and learning paradigm.
7 Scale with respect to amount of data and size of network.
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14 Modern methodologies in financial knowledge dis-
covery

14.1 Deterministic dynamic system approach

Financial data are often represented as a time series of a variety of attrib-
utes such as stock prices and indexes. Time series prediction has been one of
the ultimate challenges in mathematical modeling for many years [Drake,
Kim, 1997]. Currently Data Mining methods try to enhance this study with
new approaches.

Dynamic system approach has been developed and applied successfully
for many difficult problems in physics. Recently several studies have been
accomplished to apply this technique in finance. Table 1.8 presents the ma-
jor steps of this approach [Alexander and Giblin, 1997].

Selecting attributes (step 1) and discovering the laws (step 2) are largely
informal and the success of an entire application depends heavily on this art.
The hope of discovering dynamic rules in finance is based on the idea bor-
rowed from physics -- single actions of molecules are not predictable but
overall behavior of a gas can be predicted. Similarly, an individual operator
in the market is not predictable but general rules governing overall market
behavior may exist [Alexander and Giblin, 1997].

Table 1. 8. Steps for development of deterministic dynamic system
Step 1. Development of state space for the dynamic system, i.e., selecting and/or in-
venting attributes characterizing the system behavior.
Step 2. Discovering the laws that govern the phenomenon, i.e., discovering relations
between attributes of current and previous states (state vectors) in the form of differential
equations
Step 3. Solving differential equations for identifying the transition function (rules)
Step 4. Use of the transition function as a predictor of the next state of the dynamic
system, e.g., next day stock value.

Inferring a set of rules for dynamic system assumes that there is:

1. enough information in the available data to sufficiently characterize the
dynamics of the system with high accuracy,

2. all of the variables that influence the time series are available or they
vary slowly enough that the system can be modeled adaptively,

3. the system has reached some kind of stationary evolution, i.e. its tra-
jectory is moving on a well-defined surface in the state space,

4. the system is a deterministic system, i.e., can be described by means of
differential equations,
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5. the evolution of a system can be described by means of a surface in the
space of delayed values.

There are several applications of these methods to financial time series.
However, the literature claims both for and against the existence of chaotic
deterministic systems underlying financial markets [Alexander, Giblin,
1997; LeBaron, 1994].

Table 19 summarizes comparison of one of the dynamic systems ap-
proach methods (state-space reconstruction technique) [Gershenfeld, Wei-
gend, 1994]) with desirable values for stock market forecast (SP500).

Table 1.9. Comparison of method capability and desirable values

Characteristics State-space recon- Desirable values
struction technique for stock market
forecast (SP500)
Delivering numeric value forecast Yes Yes
Inputting samples of the time series Yes Yes
Tolerance for significant noise in data No Yes
Tolerance for time series generated by No Can be needed
high-dimensional differential equations
Tolerance for time series generated by a No Yes
non-differentiable process

State-space reconstruction technique depends on a result in non-linear
dynamics called Takens’ theorem. This theorem assumes a system of low-
dimensional non-linear differential equations that generates a time series.
According to this theorem, the whole dynamics of the system can be re-
stored. Thus, the time series can be forecast by solving the differential equa-
tions. However, the existence of a low-dimensional system of differential
equations is not obvious for financial time series as noted in Table 1.9.

Recent research has focused on methods to distinguish stochastic noise
from deterministic chaotic dynamics [Alexander, Giblin, 1997] and more
generally on constructing systems combining deterministic and prob-
abilistic techniques. Relational Data Mining follows the same direction,
moving from classical deterministic first-order logic rules to probabilistic
first-order rules to avoid limitations of deterministic systems.

14.2 Efficient market theory

The efficient market theory states that it is practically impossible to in-
fer a fixed long-term global forecasting model from historical stock mar-
ket information. This idea is based on the observation that if the market pre-
sents some kind of regularity then someone will take advantage of it and the
regularity disappears. In other words, according to the efficient market the-
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ory, the evolution of the prices for each economic variable is a random
walk. More formally this means that the variations in price are completely
independent from one time step to the next in the long run [Moser, 1994].

This theory does not exclude that hidden short-term local conditional
regularities may exist. These regularities cannot work “forever,” they
should be corrected frequently. It has been shown that the financial data are
not random and that the efficient market hypothesis is merely a subset of a
larger chaotic market hypothesis [Drake, Kim, 1997]. This hypothesis
does not exclude successful short term forecasting models for prediction of
chaotic time series [Casdagli, Eubank, 1992].

Data mining does not try to accept or reject the efficient market theory.
Data mining creates tools, which can be useful for discovering subtle short-
term conditional patterns and trends in wide range of financial data. Moreo-
ver, as we already mentioned, we use stock market data in this book not be-
cause we reject efficient market theory, but because, in contrast with other
financial data, they are not proprietary and are well understood without ex-
tensive explanations.

143  Fundamental and technical analyses

Fundamental and Technical analyses are two widely used techniques in
financial markets forecast. A fundamental analysis tries to determine all
the econometric variables that may influence the dynamics of a given
stock price or exchange rate. For instance, these variables may include
unemployment, internal product, assets, debt, productivity, type of produc-
tion, announcements, interest rates, international wars, government direc-
tives, etc. Often it is hard to establish which of these variables are relevant
and how to evaluate their effect [Farley, Bornmann, 1997].

A Technical analysis (TA) assumes that when the sampling rate of a
given economic variable is high, all the information necessary to predict the
future values is contained in the time series itself. More exactly the techni-
cal analyst studies the market for the financial security itself: price, the vol-
ume of trading, the open interest, or number of contracts open at any time
[Nicholson, 1998; Edwards, Magee, 1997].

There are several difficulties in technical analysis for accurate prediction
[Alexander and Giblin, 1997]:

— successive ticks correspond to bids from different sources,

— the correlation between price variations may be low,

time series are not stationary,

good statistical indicators may not be known,

different realizations of the random process may not be available,



12 Chapter 1

— the number of training examples may not be enough to accurately infer
rules.

Therefore, the technical analysis can fit short-term predictions for finan-
cial time series without great changes in the economic environment between
successive ticks. Actually, the technical analysis was more successful in
identifying market trends, which is much easier than forecasting the fu-
ture stock prices [Nicholson, 1998].

Currently different Data Mining techniques try to incorporate some of
the most common technical analysis strategies in pre-processing of data and
in the construction of appropriate attributes [Von Altrock, 1997].

1.5 Data mining and database management

Numerous methods for learning from data were developed during the last
three decades. However, the interest in data mining has suddenly become
intense because of the recent involvement with the field of data base man-
agement [Berson, Smith, 1997].

Conventional data base management systems (DBMS) are focused on re-
trieval of:

1. individual records, e.g., -- Display Mr. Smith’s payment on February 5;

2. statistical records, e.g., -- How many foreign investors bought stock X
last month?

3. multidimensional data, e.g., -- Display all stocks from the data base with
increased price.

Retrieval of individual records is often refereed as on-line transaction
processing (OLTP). Retrieval of statistical records often is associated with
statistical decision support systems (DSS) and retrieval of multidimen-
sional data is associated with providing online analytic processing (OLAP)
and relational online analytic processing (ROLAP).

At first glance, the above presented queries are simple, but to be useful
for decision-making they should be based on sophisticated domain knowl-
edge [Berson, Smith, 1997]. For instance, retrieval of Mr. Smith’s payment
instead of Mr. Brown’s payment can be reasonable if the domain knowledge
includes information about previous failures to pay by Mr. Smith and that he
is supposed to pay on February 5. Current databases with hundreds of giga-
bytes make it very hard for users to keep sophisticated domain knowledge
updated.

Learning data mining methods help to extend the traditional database fo-
cus and allows the retrieval of answers for important, but vague questions,
which improve domain knowledge like:
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What are the characteristics of stocks with the increased price?

What are the characteristics of the Dollar-Mark exchange rate?

Can we expect that stock X will go up this week?

How many cardholders will not pay their debts this month?

What are the characteristics of customers who bought this product?
Answerlng these questions assumes discovering some regularities and
forecasting. For instance, it would be useless to retrieve all attributes of
stocks with increased price, because many of them will be the same for
stocks with decreased price. Figures 1.1 and 1.2 represent relations between
database and data mining technologies more specifically in terms of data
warehouses and data marts. These new terms reflect the fact that database
technology has reached a new level of unification and centralization of very
large databases with common format. Smaller specialized databases are
called data marts.

DB

Database management system Data mining
system
Data warehouse (centralized very
large database with a common format) “Retrieval” of
Automatic : "
= e (discovering)
Data Mart (specialized DB) ] P multidimensional
Data Mart (specialized DB)i patterns
M?Kquelm based dn sophislicllmwi knowledge

Retrieval of Retrieval of Retrieval of
individual statistical multidimensional

records records data

Figure 1.1. Interaction between data warehouse and data mining

Figure 1.1 shows interaction between database and data mining systems.
Online analytic processing and relational OLAP fulfil an important func-
tion connecting database and data mining technologies [Groth, 1998]. Cur-
rently an OLAP component called the Decision Cube is available in Borland
C++ Builder (enterprise edition) as a multi-tier database development tool
[DelRossi, 1999]. ROLAP databases are organized by dimension, that is,
logical grouping by attributes (variables). This structure is called a data—
cube [Berson, Smith, 1997]. ROLAP and data mining are intended for
multidimensional analysis.
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Database management system Data mining
system
Data warehouse (centralized very Y
large database with a common format) What are the
A v characteristics
Data Mart (specialized Dﬂll P of stocks with
Data Mart (specialized DB)] negative profit ?
M:yd queries based on| saphjsﬁcate% knowledge Data mining
query
Display How many Display all
Mr. Smith’s foreign investors| | stocks
Ea ment on bought stock X with negative
ebruary 5 last month? profit
Individual query| | Statistical query| | ROLAP query

Figure 1.2. Examples of queries

Data repository Data cube Engines User interface
Multidimensional OLAM
data base (MDDB \ -
Data warehouse a base ( ) engine Mining
Data queries
. le—1
Data cleaning filtering T
and integration| R N
Minin
= OLAP .
Individual Metadata cuiginie result
databases (data description)

Figure 1.3. Online analytical mining (OLAM)

The next step for the integration of database and data mining technologies
is called online analytical mining (OLAM) [Han et al, 1999]. This sug-
gests an automated approach by combining manual OLAP and fully auto-

matic data mining. The OLAM architecture adapted from [Han et all, 1999]
is presented in Figure 1.3.

1.6 Data mining: definitions and practice

Two learning approaches are used in data mining:

1. supervised (pattern) learning -- learning with known classes for training
examples and

2. unsupervised (pattern) learning -- learning without known classes for
training examples.
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This book is focused on the supervised learning. The common (attribute-

based) representation of a supervised learning includes [Zighed, 1996]:

— W={w}, asample, called the training sample, chosen from a popula-
tion. Each individual w in W is called a training example.

— X(w), the state of n variables known as attributes for each training ex-
ample w.

— Y(w), the target function assigning the target value for each training
example w. Values Y(w) are called classes if they represent a classifica-
tion of training examples.

Population Assigning target values
to training examples - ——--___-___,
1;‘:::;;3 Y(w) K Target values :
" ]
W={w} | T={(t;.ty..... ) )
mmmmmmmmmamad
-~
P -
X(w) _ - " Assigning (Iefxrmng}
- rule /classifier
+ P J0xy, %5, Xp)

{(x1%g:.0, X,)}

Representation training examples by
descriptors: (x},X;...., X, )= X(w)

Figure 1.4. Schematic supervised attribute-based data mining model

The aim is to find a rule (model) J predicting target the value of the target
function Y(w). For example, consider w with unknown value Y(w) but with
the state of all its attributes X(w) known:

JIXW)=Y(w),

where J(X(w)) is a value generated by rule J. It should be done for a major-
ity of examples w in W. This scheme adapted from [Zighed, 1996] is shown
in 14. The choice of a specific data mining method to learn J depends on
many factors discussed in this book. The resulting model J can be an alge-
braic expression, a logic expression, a decision tree, a neural network, a
complex algorithm, or a combination of these models.

An unsupervised data mining model (clustering model) arises from the
diagram in Figure 14 by erasing the arrow reflecting Y(w), i.e., the classes
are given in advance.
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There are several definitions of data mining. Friedman [1997] collected
them from the data mining literature:

— Data mining is the nontrivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data. - Fayyad.

— Data mining is the process of extracting previously unknown, compre-
hensible, and actionable information from large databases and using it to
make crucial business decisions. - Zekulin.

— Data Mining is a set of methods used in the knowledge discovery process
to distinguish previously unknown relationships and patterns within
data. - Ferruzza.

— Data mining is a decision support process where we look in large data-
bases for unknown and unexpected patterns of information. - Parsaye.

Another definition just lists methods of data mining: Decision Trees, Neural

Networks, Rule Induction, Nearest Neighbors, Genetic Algorithms.

Less formal, but the most practical definition can be taken from the lists
of components of current data mining products. There are dozens of prod-
ucts, including, Intelligent Miner (IBM), SAS Enterprise Miner (SAS Cor-
poration), Recon (Lockheed Corporation), MineSet (Silicon Graphics), Re-
lational Data Miner (Tandem), KnowledgeSeeker (Angoss Software), Dar-
win (Thinking Machines Corporation), ASIC (NeoVista Software),
Clementine (ISL Decision Systems, Inc), DataMind Data Cruncher (Da-
taMind Corporation), BrainMaker (California Scientific Software), WizWhy
(WizSoft Corporation). For more companies see [Groth, 1998].

The list of components and features of data mining products also col-
lected by [Friedman, 1997] includes attractive GUI to databases (query lan-
guage), suite of data analysis procedures, windows style interface, flexible
convenient input, point and click icons and menus, input dialog boxes, dia-
grams to describe analyses, sophisticated graphical views of the output, a
data plots, slick graphical representations: trees, networks, and flight simu-
lation.

Note that in financial data mining, especially in stock market forecasting
and analysis, neural networks and associated methods are used much more
often than in other data mining applications. Several of the software pack-
ages used in finance include neural networks, Bayesian belief networks
(graphical models), genetic algorithms, self organizing maps, neuro-fuzzy
systems. Some data mining packages offer traditional statistical methods:
hypothesis testing, experimental design, ANOVA, MANOVA, linear regres-
sion, ARIMA, discriminant analysis, Markov chains, logistic regression,
canonical correlation, principal components and factor analysis.
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1.7 Learning paradigms for data mining

Data mining learning paradigms have been derived from machine learn-
ing paradigms. In machine learning, the general aim is to improve the per-
formance of some task, and the general approach involves finding and ex-
ploiting regularities in training data [Langley, Simon, 1995].

Below we describe machine learning paradigms using three components:
— Knowledge representation,

— Forecast performer, and

— Learning mechanism.

Knowledge representation sets a framework for representing prior knowl-

edge. A forecast performer serves as a final product, generating a forecast

from learned knowledge. A learning mechanism produces new knowledge
and identifies parameters for the forecast performer using prior knowledge.

Knowledge representation is the major characteristic used to distin-
guish five known paradigms [Langley, Simon, 1995]:

1. A multilayer network of units. Activation is spread from input nodes to
output nodes through internal units (neural network paradigm).

2. Specific cases or experiences applied to new situations by matching
known cases and experiences with new cases (instance-based learning,
case-based reasoning paradigm).

3. Binary features used as the conditions and actions of rules (genetic algo-
rithms paradigm).

4. Condition-action (IF-THEN) rules, decision trees, or similar knowledge
structures. The action sides of the rules or the leaves of the tree contain
predictions (classes or numeric predictions) (rule induction paradigm).

5. Rules in first-order logic form (Horn clauses as in the Prolog language)
(analytic learning paradigm).

6. A mixture of the previous representations (hybrid paradigm).

The above listed types of knowledge representation largely determine the
frameworks for forecast performers. These frameworks are presented be-
low [Langley, Simon, 1995]:

1. Neural networks use weights on the links to compute the activation
level passed on for a given input case through the network. The activation
of output nodes is transformed into numeric predictions or discrete deci-
sions about the class of the input.

2. Instance-based learning includes one common scheme, it uses the tar-
get value of the stored nearest (according to some distance metric) case as
a classification or predicted value for the current case.

3. Genetic Algorithms share the approach of neural networks and other
paradigms, because genetic algorithms are often used to speed up the
learning process for other paradigms.
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4. Rule induction. The performer sorts cases down the branches of the
decision tree or finds the rule whose conditions match the cases. The val-
ues stored in the if-part of the rules or the leaves of the tree are used as
target values (classes or numeric predictions).

5. Analytical learning. The forecast is produced through the use of back-
ground knowledge to construct a specific combination of rules for a cur-
rent case. This combination of rules produces a forecast similar to that in
rule induction. The process of constructing the combination of rules is

called a proof or "explanation" of experience for that case.

The next important component of each of these paradigms is a learning
mechanism. These mechanisms are very specific for different paradigms.
However, search methods like gradient descent search and parallel hill

climbing play an essential role in many of these mechanisms.

Figure 1.5 shows the interaction of the components of a learning para-
digm. The training data and other available knowledge are embedded into
some form of knowledge representation. Then the learning mechanism
(method, algorithm) uses them to produce a forecast performer and possibly
a separate entity, learned knowledge, which can be communicated to human

experts.

Learning block

Learning
mechanism

Resulting block

Leamned

f . 5

Knowledge
representation
! b

Training data

pi knowledge

Forecast
performer

i_

Figure 1.5. Learning paradigm

Neural network learning identifies the forecast performer, but does not
produce knowledge in a form understandable by humans, IF-THEN rules.
The rule induction paradigm produces learned knowledge in the form of un-
derstandable IF-THEN rules and the forecast performer is a derivative from

this form of knowledge.
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Steps for learning. Langley and Simon [1995] pointed out the general
steps of machine learning presented in Figure 1.6. In general, data mining
follows these steps in the learning process.

These steps are challenging for many reasons. Collecting training exam-
ples has been a bottleneck for many years. Merging database and data min-
ing technologies evidently speeds up collecting the training examples. Cur-
rently, the least formalized steps are reformulating the actual problem as a
learning problem and identifying an effective knowledge representation.

l Reformulating the actual problem as some learning problem J

iy

Identifying an effective representation for
training data and the knowledge to be learned

iy

‘ Collecting the training data for learning

J

Learning new knowledge
Developing forecast performer
Evaluating the learned knowledge

Fielding the learned knowledge base
(embedding new knowledge into the actual problem environment)

Figure 1.6. Data mining steps

1.8 Intellectual challenges in data mining

The importance of identifying an effective knowledge representation has
been hidden by the data-collecting problem. Currently it has become in-
creasingly evident that the effective knowledge representation is an im-
portant problem for the success of data mining. Close inspection of success-
ful projects suggests mat much of the power comes not from the specific
induction method, but from proper formulation of the problems and from
crafting the representation to make learning tractable [Langley, Simon,
1995]. Thus, the conceptual challenges in data mining are:

—  Proper formulation of the problems and
— Crafting the knowledge representation to make learning meaningful
and tractable.
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In this book, we specifically address conceptual challenges related to
knowledge representation as related to relational date mining and date
types in Chapters 4-7.

Available data mining packages implement well-known procedures from
the fields of machine learning, pattern recognition, neural networks, and
data visualization. These packages emphasize look and feel (GUI) and the
existence of functionality. Most academic research in this area so far has
focused on incremental modifications to current machine learning methods,
and the speed-up of existing algorithms [Friedman, 1997].

The current trend shows three new technological challenges in data
mining [Friedman, 1997]:

— Implementation of data mining tools using parallel computation of on-
line queries.

- Direct interface of DBMS to data mining algorithms.

- Parallel implementations of basic data mining algorithms.

Some our advances in parallel data mining are presented in Section 2.8.
Munakata [1999] and Mitchell [1999] point out four especially promis-

ing and challenging areas:

— 1incorporation of background and associated knowledge,

— incorporation of more comprehensible, non-oversimplified, real-world
types of data,

— human-computer interaction for extracting background knowledge and
guiding data mining, and

— hybrid systems for taking advantage of different methods of data mining.

Fu [1999] noted “Lack of comprehension causes concern about the credi-
bility of the result when neural networks are applied to risky domains, such
as patient care and financial investment”. Therefore, the development of a
special neural network whose knowledge can be decoded faithfully is con-
sidered as a promising direction [Fu, 1999].

It is important for die future of data mining that the current growth of this
technology 1s stimulated by requests from the database management area.
The database management area is neutral to the learning methods, which
will be used. This already has produced an increased interest for hybrid
learning methods and cooperation among different professional groups de-
veloping and implementing learning methods.

Based upon new demands for data mining and recent achievements in in-
formation technology, the significant intellectual and commercial future of
the data mining methodology has been pointed out in many recent publica-
tions (e.g., [Friedman, 1997, Ramakrishnan, Grama, 1999]). R. Groth [1997]
cited “Bank systems and technology” [Jan., 1996] which states that data
mining is the most important application in financial services.



Chapter 2

Numerical Data Mining Models and Financial
Applications

There's always an easy solution to every human problem -- neat, plausi-
ble, and wrong.
Henry Louis Mencken

2.1.  Statistical, autoregression models

Traditional attempts to obtain a short-term forecasting model of a par-
ticular financial time series are associated with statistical methods such as
ARIMA models.

In sections 2.1 and 2.2, ARIMA regression models as typical examples
of the statistical approach to financial data mining [Box, Jenkins, 1976;
Montgomery at al, 1990] are discussed.

Section 2.3 contains instance-based learning (IBL) methods and their
financial applications. Another approach, sometimes called “regression
without models” [Farlow, 1984] does not assume a class of models. Neural
networks described in sections 2.4-2.8 exemplify this approach [Worbos,
1975]. There are sensitive assumptions behind of these approaches. We dis-
cuss them and their impact on forecasting in this chapter.

Section 2.9 is devoted to “expert mining”, that is, methods for extract-
ing knowledge from experts. Models trained from data can serve as artificial
“experts” along with or in place of human experts.

Section 2.10 describes background mathematical facts about the restora-
tion of monotone Boolean functions. This powerful mathematical mecha-
nism is used to speed up the testing of learned models like neural networks
in section 2.8 and “expert mining”” methods in section 2.9.
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2.1.1. ARIMA Models

Flexible ARIMA models were developed by Box and Jenkins [Box, Jen-
kins, 1976] ARIMA means AutoRegressive Integrated Moving Average.
This name reflects three components of the ARIMA model. Many data
mining and statistical systems such as SPSS and SAS support the computa-
tions needed for developing ARIMA models. Brief overview of ARIMA
modeling is presented in this chapter. More details can be found in [Box,
Jenkins, 1976; Montgomery et al, 1990] and manuals for such systems as
SPSS and SAS.

ARIMA models include three processes:

1. autoregression (AR);
2. differencing to eliminate the integration (I) of series, and
3. moving average (MA).

The general ARIMA model combines autoregression, differencing and
moving average models. This model is denoted as ARIMA(p,d,q), where

p is the order of autoregression,

d is the degree of differencing, and

q is the order of the moving average.

Autoregression. An autoregressive process is defined as a linear function
matching p preceding values of a time series V(t-1), V(t-2),...,V(t-p) with
V(t), where V(t) is the value of the time series at the moment t.

In a first-order autoregressive process, only the preceding value is used.
In higher order processes, the p preceding values are used. This is denoted
as AR(p). Thus, AR(1) is the first-order autoregressive process, where:

V(t) = C+ g V(t-1) + D(t).

Here C is a constant term related to the mean of the process, and D(t) is a
function of t interpreted as a disturbance of the time series at the moment t.
The coefficient g, is estimated from the observed series. It shows the cor-
relation between V(t) and V(t-1).

Similarly, a second order autoregression, AR(2), takes the form below,
where the two preceding values are assumed to be independent of one an-
other:

V(1) = C+giV(t-1) + g2V(t-2)+D(t).
The autoregression model, AR(p), is the same as the ARIMA(p,0,0) model:

V(t) = CHg V(t-1) + V(E-2)+...+g V(E-p)+D(Y).
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Differencing. Differencing substitutes each value by the difference between
that value and the preceding value in the time series. The first difference is

W(t)=V(t)-V(t-1).

The standard notation for models based on the first difference is I(1) or
ARIMA(0,1,0). Similarly, I(2) or ARIMA(0,2,0) models are based on the
second difference:

Z(t)=W(t)-W(t-1).
Next we can define the third difference:

Y(O=Z(t)-Z(t-1)

for I(3). As we already mentioned, the parameter d in I(d) is called the de-
gree of differencing.

The stationarity of the differences is required by ARIMA models. Dif-
ferencing may provide the stationarity for a derived time series, W(t), Z(t) or
Y(t). For some time series, differencing can reflect a meaningful empirical
operation with real world objects. These series are called integrated. For
instance, trade volume measures the cumulative effect of all buy/sell trans-
actions.

An I(1) or ARIMA(0,1,0) model can be viewed as an autoregressive
model, AR(1) or ARIMA(1,0,0), with a regression coefficient g=1:

V(t) = gV(t-1) + D(¥).

In this model (called random walk), each next value is only a random
step D(t) away from the previous value. See chapter 1 for a financial inter-
pretation of this model.

Moving averages. In a moving-average process, each value is deter-
mined by the weighted average of the current disturbance and q previous
disturbances. This model is denoted as a MA(q) or ARIMA(0,0,q). The
equation for a first-order moving average process MA(1) is:

V(t) = C + D(t) + 5,D(t -1),
MA(2) is:

V(t) = C + D(t) + 5,D(t =1)+s,D(t-2),
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and MA(q) is:

V(t) = C + D(t) + 5;D(t —1)+s,D(t-2)+...+s;D(t-q)

The major difference between AR(p) and MA(q) models is in their com-
ponents: AR(p) is averaging the p most recent values of the time series
while MA(q) is averaging the q most recent random disturbances of the
same time series.

The combination of AR(1) and MA(1) creates an ARMA(1,1) model,
which is the same as the ARIMA(1,0,1), is expressed as

V(t)=C+g, V(t-1)+s,D(t-1)+D(t)

The more general model ARMA(p,q), which is the same as
ARIMA(p,0,q) is:

V(t)=C+g V(t-1 )+ V(t-2)+... +g V(t-p)+
D(t)+s;D(t-1)+5;D(t-2)+.....+sD(t-q).

Now we can proceed to introduce the third parameter for differencing,
for example, the ARIMA(1,1,1) model:

V(t)-V(t-1)=C+gi(V(t-1)-V(t-2)) +D(t)+ s, D(t-1)
or equivalently
W(t)=C+gW(t-1) +D(t)+ s,D(t-1),

where W(t)=V(t)-V(t-1) in the first difference, that is, d=1
Similarly, ARIMA(1,2,1) is represented by:

Z(t)=C+g, Z(t-1) +D(t)+ s;D(t-1),

where
Z(ty= W(t)-W(t-1)

is the second difference (d=2), and the ARIMA(1,3,1) model is
Y(t)=C+gi Y(t-1) +D(t)+ s,D(t-1),

where Y(t)=Z(t)-Z(t-1) is the third difference (d=3)
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Generalizing this we see the ARIMA(p,3,q) model is:

Y(1)=C+g Y(t-1)+g Y (t-2)+.. +g Y (t-p)+
D(t)+siD(t- 1 y+8,D(t-2)+...+8,D(t-q) Y (t).

In practice, d larger than 2 or 3 are used very rarely [Pankratz, 1983].
2.1.2. Steps in developing ARIMA model

Box and Jenkins [1976] developed a model-building procedure that
allows one to construct a model for a series. However, this procedure is not
a formal computer algorithm. It requires user’s decisions in several critical
points. The procedure consists of three steps, which can be repeated several
times:

— Identification,
— Estimation, and
— Diagnosis.

Identification is the first and most subjective step. The three integers
p,d,q in the ARIMA(p,d,q) process generating the series must be deter-
mined. In addition, seasonal variation parameters can be incorporated into
the ARIMA models. Seasonal ARIMA models are discussed later in section
2.1.3.

ARIMA models are applied only to time series that have essentially con-
stant mean and variance through time [Pankratz, 1983]. These series are
called stationary. Integrated series are typically non-stationary. In this
case, the time series should be transformed into a stationary one, using dif-
ferencing or other methods. Logarithmic and square-root transformations are
used if the sort-term variation of the time series is proportional to the time
series value, V(t). Next, we must identify p and g, the order of autoregres-
sion and of moving average. In a non-seasonal process:

— both p and q are usually less than 3 and
— the autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) of a series help to identify the p and q.

Below ACF and PACEF ofa series are described. In practice, ACF and PACF
are computed using a given part of the entire time series, therefore, they are
merely estimated ACF and PACF.

This is an important note, because ifa given part of the time series is not
representative for the future part, correlation parameters including ACF and
PACF will be misleading. ACF is based on the standard Pearson’s correla-
tion coefficients applied to the time series with a lag. Recall with two inde-
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pendent time series x and y, their correlation coefficient r(x,y) is computed,
e.g., [Pfaffenberger, Patterson, 1977]:

= (o) = i - M(x)Xy, - M(»)
X - ME L0 - MOW

where M(x) is the mean of {x} and M(y) is the mean of {y}.
Instead, we consider correlation between consecutive values of the same
time series with lag k [Pankratz, 1983]:

I VO-ME)) Y (V(t+k)- M)

where M(V) is the mean of V(t), t=1,...,n.
For large n (n>>k) this formula can be simplified:

r(k) = r(V(O), V(t + b)) =

S V- ME)VE+H-MP))
T VO-ME)

r(e)=r(V@),V(it+k) =

Now, if the time series are considered as fixed and k as varying from 1 to
(n-1), then ryor r(k)=r(V(t),V(t+k)) is a function of k and is called estimated
ACF. The idea of PACF is to modify ACF to be able to incorporate not
only correlation between V(t) and V(t+k) but also the impact of all values in
between V(t+1), V(t+2), ...,V(t+(k-1)) [Pankratz, 1983]:

k-1
r(k) = 3 4k ~1,j)r(k~ )
p(k, k)= p(k) = = (k=23,.)
1= 4(k-1, /)r(j)

J=t

where ¢(1,1)=r(1) and &(k,j)=¢(k-1,))}-d(k.K)d(k-1,k-j), k=3 4,...;j=1,2,....k-1.
The function ¢(k) is called an estimated partial autocorrelation function
(PACF).

A user can conclude that ARIMA model parameters p, q and d are accept-
able by analyzing the behavior of ACF and PACF functions. For more detail
see [Pankratz, 1983].
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Estimation. Assume that parameters p, d, and q are preliminarily identi-
fied. Then coefficients of the ARIMA model are estimated along with the
error of the model (residual). These estimates are accompanied by statistical
parameters like the confidence limits, the standard error of the coefficients,
and the statistical significance of the coefficients. The process can be re-
peated for different p, d, and g, ifthe identification of the model is uncertain.
We have already mentioned that identification of p, d, and q is the most
subjective step, therefore, several alternative values of p, d, and q can be
used.

Diagnosis. This step checks to see if the model is appropriate. A user
tests that:

— the ACF and PACEF are “mostly” close to 0,

— the first- and second-order correlations are “small” (if one of them is
large, then the model is probably incorrectly specified),

— the residual time series checked by ACF and PACF shows “no pattern”,
that is, white noise (this can be tested by the Box-Ljung Q statistics).

Some data mining tools provide the ARIMA with several criteria for

choosing among models. Traditionally, final ARIMA models substitute zero

for the computed coefficients when they are not statistically significant.

However, recently an alternative approach has come into favor -- accepting

the best-fitting model with coefficients that are insignificant according to a

simple statistical test. We discuss this issue in section 2.2 below.

2.1.3. Seasonal ARIMA

It is possible that a time series has periodic regularity. For instance, there
is the known January effect in the stock market (see chapter 5). Therefore, a
period can be 12 as with a year or 7 as with a week.

The XII ARIMA algorithm estimates seasonal factors with ARIMA
forecasts and back casts. There are three steps in this algorithm:
— Select variables,
- Select multiplicative, additive, or logarithmic seasonal options,
— Adjust extreme components of the process.

Multiplicative Seasonal Adjustment means that the seasonally adjusted
series is multiplied to produce the original series.

Additive Seasonal Adjustment means that the seasonal adjustments are
added to the seasonally adjusted series to obtain the observed values.

Logarithmic Seasonal Adjustment means that the seasonal adjustments
are added to the seasonally adjusted series in the logarithmic scale.
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2.14. Exponential smoothing and trading day regression

The trend and seasonal components can be specified in custom models
available in statistical software like SPSS. For example, exponential
smoothing levels irregular components for the time series with the following
characteristics:

— a linear trend and no seasonal variation;

— alinear trend and multiplicative seasonal variation;

— the mean level of the series increases at a constant rate with time;

— the mean level of the series increases exponentially with time;

— the mean level of the series increases with time, but the rate of change
declines;

— the magnitude of seasonal variation does not depend on the overall level
of the series;

— the magnitude of seasonal variation depends on the overall level of the
series.

This smoothing is done by optimization of parameters that control trend
and seasonal components. A grid search is used to find parameters for the
best “smooth” model. Each node of the grid is associated with a model;
therefore, a large number of models should be analyzed to find the best one.
Typical optimization parameters are:

— The relative weight (&) assigned to recent observations, as opposed to
the overall series mean.

— Trend value (B) is the relative weight given to recent observations in es-
timating the present series trend.

— Seasonal value (8) is the relative weight given to recent observations in
estimating the present seasonality.

— Trend modification value (t)is the rate at which a trend is reduced in
magnitude over time.

Trading Day Regression. Seasonal XII ARIMA model is based on an
even periodicity. This assumption simplifies the seasonal ARIMA model,
but can make this model unrealistic and useless. For instance, the number of
trading days in different months is not a constant. It can be 20, 21 or 22
days. Day adjustment controls the computation of the trading day ARIMA
model and day weights. For instance, trading weekdays may get a weight of
1.4 and Saturday and Sunday may get a weight of 0.

2.1.5. Comparison with other methods.

As we have seen, the use of ARIMA models requires many individual
adjustments like adjustments to the number of trading days. There are two
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ways to design ARIMA models, automatic and custom models, offered by
software tools like SPSS. Selecting the best automatic model often means
fitting three default ARIMA models to the series and selecting the one that
fits best. In custom models, a user specifies the model parameters: autore-
gressive (p), difference (d), and moving average (q). A user could also
specify the corresponding seasonal parameters by entering them into the
model. This shows that ARIMA models and statistical models, in general,
are sensitive to expert decisions about parameters. Table 1.7 summarizes
many of the differences between a variety of data mining methods. The
ARIMA method was evaluated in the category of statistical methods (SM)
in the column marked ST. According to [Dhar, Stein, 1977] this column in-
dicates the two strongest features of SM: embeddability and independence
of an expert in comparison with other methods.

Embeddability of SM into application software systems is really its most
attractive and indisputable feature. SM software and open codes are widely
available and their runtimes are not prohibitive for many real tasks.

Independence of an expert is relatively high in comparison with neuro-
fuzzy and some other methods. However, as we discussed above, tuning
ARIMA models is an art and an expert is integral and the most important
part of this process.

With SM it is well known that it is easy to use numerical data. Two
other features are indicated as weakest features: flexibility and use of logi-
cal expressions.

The last feature is crucial for developing hybrid methods combining
statistical (probabilistic) methods and first-order logic methods like
MMBDR (chapters 4 and 5). These methods are marked as PILP (Probabilis-
tic Inductive Logic Programming) methods in table 1.7. Moreover, in tasks
with switching regularities, flexibility and logical switches are necessary.
For instance, switching from a bull trend to a bear trend requires both of
these features.

Other features of ARIMA and other statistical methods are on the aver-
age level in comparison with alternative methods (table 1.7 in chapter 1).
There is only one feature in table 1.7 making statistical methods unique.
This is the possibility to estimate the statistical significance of a learned
model. If assumptions of the statistical test are reasonable for the task, then a
positive test tells us about predictive power of the model as well as about
its performance on training and testing data.
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2.2. Financial applications of autoregression models

ARIMA models can be applied for forecasting a time series if the trans-
formed time series is stationary. However, in financial markets, often time
series like stock indices, foreign exchange trends and others are all non-
stationary even for the short-term trend [Drake, Kim, 1997]. At present,
there is no convenient way to modify or update the estimates of the model
parameters as each new observation become available [Montgomery, et al.,
1990].

ARIMA models implicitly assume that a strong and relatively simple sta-
tistical regularity exists in a time series. Unfortunately, this is not a very re-
alistic assumption for many financial time series. Therefore, the successful
use of ARIMA is still an individual art rather than a regular procedure.
Moreover, the possibility to present all actual regularities in one simple for-
mula is questionable for many time series.

Let us suppose that there are 130 local regularities in the time series.
What is the chance to that one will be able to compress 130 regularities into
one simple autoregression formula? To use ARIMA we need to identify
these local areas and adjust many parameters. For example, suppose n local
intervals [A;,B1], [A2,B2),....[As, By} are given along with n autoregression
functions Fy, F, ..., F, such that,

IF Ai<x<B; THEN Fi(x), i=1,2,...,.n,

we need to find all A; and B; values as parameters. This can be a nontrivial
task, especially for a large n.

However, despite these difficulties, ARIMA and related methods have
been competitive with newer methods like neural networks in financial ap-
plications. Examples in open competition using the same data and evalua-
tion criteria can be found in the Journal of Computational Intelligence in
Finance [Non-linear Financial Forecasting, 1997].

The important specifics of data mining methods in finance and the stock
market, in particular, is that often forecasting is not the final product.
Forecasting is used as a basis in trading strategies (management decisions).
For instance, consider the following trading strategies:

— selling the security and then buying it back at a lower price,

— taking the cash proceeds from the sale and putting them to work in a
savings account or any other investment,

— owning the stock long-term (passive buy-and-hold strategy).

The performance of these strategies depends on parameters for overall return

like the prices at which the transactions are executed, transaction costs and

dividends paid by the stock.
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Therefore, trading (management) performance rather than forecast-
ing accuracy should measure the success of the forecast. This attractive,
objective measure of success has a drawback -- an inappropriate trading
strategy weakens the potential gain from an accurate forecast.

On the other hand, even a very subtle forecasting result combined with
an appropriate trading strategy can bring a significant profit.

For instance, ARIMA models shown in table 2.1 below have a subtle
statistical significance, but some of them (Models 4 and 5) were able to pro-
duce correct buy/hold/sell signals in 75-79% of cases in simulated trading
for two years.

The ARIMA models examined are presented in Table 2.1, where s is the
periodic parameter (s=5 days), t is the day, T(t) is the target stock for day t,
and a,b,c and q are model coefficients. These coefficients were evaluated for
models 3-5 using non-linear optimization methods and test data (1995-1996
years). The sign of T(t+1)-T(t) was predicted with high accuracy, but an ab-
solute value was not predicted accurately.

Table 2.1. Experiments with ARIMA models for stock forecasting on 1995-96 data

# | Model Forecasting performance
(correct buy/sell signal)
L | Ta+1)=Tw+¢ Not applicable
t: all trading days
2 | T(t+1)=aT(t)+b, 62.58%
t: all trading days
3 | T+4)=(1g)T(t+3)+qT(1+2)+¢’T(1) +c, 58.84%
t: all trading days
4 | T(t+s)=aT(1)+b, 79.6%
t: the specific weekday, s=5
5 | T(t+2s)=aT(t+s)+bT(1)+c 75.92%
t: the specific weekday, s=5

However, correct forecast of the sign is sufficient to form a successful
buy/sell trading strategy. The sign forecast is simpler than absolute value
forecast and first-order logic methods (Chapters 4 and 5) fit to discover sign
forecast rules. Model #1, called a random walk model, was reviewed briefly
in chapter 1. This model is “...a good ARIMA model for many stock-price
series” [Pancratz, 1983, p.410]. Nevertheless, this model is not applicable to
interesting trading strategies. It does not produce ups and downs needed for
developing those trading strategies. This model has zero difference for all
days. Parameters for the most successful Models 4 and 5 were discovered
using the relational data mining approach and the MMDR algorithm de-
scribed in Chapters 4 and 5.
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In Chapter 1 (Table 1.7) we presented comparative capabilities of differ-
ent data mining methods based on [Dhar, Stein, 1997]. According to Dhar
and Stein, accuracy, explainability, response speed, and scalability of statis-
tical methods including ARIMA are medium in comparison with other
methods. On the other hand, flexibility, tolerance for noise and complexity
are rather low in comparison with other methods. Only one parameter, pos-
sibility to embed into a larger system, was graded as high.

23. Instance-based learning and financial applications

The literature considers two similar concepts instance-based learning
(IBL) and case-based reasoning [Mitchell, 1997]. Instance-based learning
covers methods based on objects presented by a set of numeric attributes
of a fixed size. Case-based reasoning allows one the use of more general
objects. In this section, we focus on instance-based learning. In ILB objects
are usually embedded into the n-dimensional Euclidean space with measur-
ing the distance between data objects

D={d;}, di=(di1,di2..., din), i=1,...,m,

by the Euclidean distance p(d;,d;):

m 2
p(d;nd)) = T (@ —d,)7.
Then the target value for a new object d is assigned according to the target
values of some training objects. Usually, it is done selecting k nearest
neighbours d,,dj,...,dx [Mitchell, 1997], i.e., objects with minimal p(d,d;):
IF dg=d; THEN p(d,d,)>p(d.d;) forall i=l,... k.

One of the simplest approaches is to assign a target value for d by averaging

the target values of the k nearest neighbors if the target is continuous vari-
able:

T(d)=(T(d,)+T(d2)+... +T(di))/k

Alternatively, each object d; can be weighted proportionally to its distance
from d:

T(d)=(W|T(d1)+W2T(d2)++WkT(dk))/ k
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Similarly, if the target variable presents a discrete classification, then a
weighted majority voting mechanism is used:

I,N, >N,
class=4¢0,N, >N,
no classification otherwise.

Here Ny = wiCyy(d)+...,+w,Cyi(d)+...+w,Ci(d)), where w; is a weight of
the i™ classifier and Ci(d)=1 if i classifier classified d into the first class.
Similarly, N; = w,Cyi(d)+...,+wCai(d)+...+wCy(d)), where Cyi(d) =1 if the
i" classifier classified d into the second class.

It is well known that the result of instance-based learning can be very
sensitive to parameters like k and w; and normalization of attributes. For
instance, stock prices and trade volumes are measured in dollars. Let
d,=<35, 45000> and d,=<45, 56000> represent data for two stocks in the
format <$price, $volume>. Then p(d;,d,)=11000.00455, but if we exclude
stock prices from dj and d; descriptions and consider d; =<45000> and d,
=<56000> then p(d;,d;)=11000.00. Therefore contribution of stock price
into the Buclidean distance is miserable (less then 5#107). Thus, it is obvi-
ous that normalization is needed in order to use information about differ-
ences in the stock prices, but the result will be sensitive to the particular
normalization used.

Two possible normalizations are:

1. normalization based on max values of stock price and volume in the
sample:

StockPrice(d;)/maxStockPrice, StockVolume(d;)/maxStockVolume
2. normalization based on averages in the sample:

StockPrice(d;)/ AverageStockPrice,
StockVolume(d;)/AverageStockVolume.

Similarly, specific normalizations and related data coding are needed for
many data types. More about different coding schemes associated with
meaningful distances and advanced case-based learning methods are pre-
sented, for instance, in [Kovalerchuk, 1973, 1975, 1997; Hattoru, Torri,
1993; Kamgar-Parsi, Kanal, 1985].

The voting schemes can be extended outside of the k neighbors to
use more complex estimates than presented above. One of methods (AVO
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method) uses combinatorial estimates for voting [Zhuravlev, Nikiforov,
1971]:

1,G, >G,+8, & G,/G,+G,)>d,
class=4{0,G, >G,+8, & G,/G,+G;)>8,
no classification, else

where 8; and 8, are voting thresholds and G, is an combinatorial estimate of
closeness of object d to the objects of class #1 using distance between d and

all objects of the class#1 {d"} .Similarly, Gz estimates closeness of d to the
class #2. Below we present formulas for Gy and Gz, where k is a parameter:

Z:.{n p(d,,d)} G,= Z"(: p(d,,d)}

All distances are viewed as integers, they are computed using Hamming
distance H(d,d;) with thresholds ej,e3,...,en:

H(di’dj)=zl-l.n Al’

where A, 1s a threshold difference:
\if|d, -d, |2e, 1
" S\0ifld, —d, ke, &2

This case-based method was studied and used intensively: In particular, it
has been shown in [Kovalerchuk, 1977] that this method is sensitive to
backcasting. Backcast means the forecast of known attributes values di
which have not been used for training. For instance, a backcast value dis de-
pends on an entered hypothetical target value T. At first glance, it appears to
not be a very useful property. However, for non-stationary training data this
is the way to ‘“‘extend” the sample. Extending the data allows for a better
testing of a discovered regularity. In this way, 10 attributes and 1000 cases
can be used to obtain 10*1000=10000 values for backcasting, because for
the training data any value of the attributes, not only the target, can be back-
cast. This approach has been used successfully with the AVO instance-based
learning method for classification of court decisions with a scarce data set
[Kovalerchuk et al, 1977].
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Case-based reasoning covers instance-based learning relaxing the re-
quirement of embedding data into Euclidean space. Other presentation of
data are permitted and alternative measures of closeness can be used
[Mitchell, 1997].

Financial Time Series Forecasting using k-Nearest Neighbors Classi-
fication. Maggini et al. [1997] transform the prediction problem into a clas-
sification task and use an approach based on the k-nearest neighbors algo-
rithm to obtain the most probable variation with respect to the present
price value. Often predicting the actual price with high accuracy is unreal-
istic. Therefore, classes of prices are predicted instead of values. It is based
on the past variations and other variables that might be correlated. In addi-
tion, the classification is based on a set of examples extracted from the pre-
vious values of the series. The classification is made adaptively -- new val-
ues are inserted in the prototype set when they are available and the old val-
ues are discarded. This method learns quickly because it is sufficient to
memorize all the values contained in the fitting set [Maggini et al., 1997]

Comparison with other methods. A summary of differences between
data mining methods was presented in Table 1.7 (Chapter 1). The instance-
based learning methods were evaluated in the column marked IBL. Ac-
cording to [Dhar, Stein, 1977] this column indicates the two strongest fea-
tures of IBR: scalability and flexibility. We added to Table 1.7 that it is
easy to use numerical data with ILB. Two other features are indicated as
weakest features: low compactness and use of logical expressions. We
added the last feature as crucial for developing explainable models like hy-
brid models combining statistical (probabilistic) inference and first-
order logic like MMDR (Chapters 4 and 5). These methods are marked as
PILP (Probabilistic Inductive Logic Programming) methods in Table 1.7.
The flexibility and scalability of instance-based learning has lead to these
methods being widely and successfully used in data mining including finan-
cial applications. For instance, adding new data to the k-nearest neighbor
method increases the training time and forecasting time reasonably. Inde-
pendence of an expert when using IBL is relatively high in comparison with
neuro-fuzzy and some other methods. In IBL, selection of measure of close-
ness and data normalization can be challenging. Using Euclidean distance
has the obvious advantage of computational simplicity, but it may not be
adequate to the problem. This distance is not invariant to the attribute scale
transformation. Tuning normalization and selecting a distance measure is an
art and an expert is integral to and perhaps the most important part of this
process. Embeddability of IBL is quite good -- software and open codes are
widely available and runtime is not prohibitive for many real tasks.
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Most of the other features of IBL are average in comparison with alter-
native methods (see Table 1.7). There is one feature of the k-nearest neigh-
bors method that makes it unique.

This is the possibility for an expert to study the behavior of a real case
with similar attributes and motivate his/her intuition and informal knowl-
edge for the final forecasts. Below some features of IBL based on [Dhar,
Stein, 1977] are presented.

Explainability Medium
Response speed Medium-High
Tolerance for noise in data Medium
Tolerance for sparse data Medium

Ease of use logical relations Low

Ease of use of numerical data High

These features are needed to compare IBL with probabilistic ILP. Excepting
the feature - “ease of use of numerical data”, the probabilistic ILP methods
have advantages over IBL. To use numerical data in a probabilistic ILP, the
data should be transformed into relational form (see Chapter 4).

2.4. Neural Networks

2.4.1. Introduction

Neural networks are widely presented in many available publications,
therefore in this section we present only a short overview of neural networks
based on terms and notation from [Russel, Norvig, 1995] and [Mitchell,
1997]. Section 2.5 is devoted to a new approach for testing neural networks
and other data mining methods. Following that, section 2.6 discusses finan-
cial applications of neural networks.

A neural network can be viewed as consisting of four components:

<U,L%In,g>,

where U is a set of units (nodes, neurons), L" is a set of weighted links
between units, In is a set of input functions and g is an activation function.
These components allow the network to propagate from input into output.
Below these components are described more specifically.

The set of units U consists of three parts:

U=<Ujn,Up,Uow™,
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where
Ui, is a set of input units called the input layer,
Uy, is a set internal (hidden) units called the hidden layers and
Uow 18 a set of output units, called the output layer.
The set of weighted links, L", consists of two components:

LY =<L,W>,

where L is a set of links between nodes and W is a set of numeric weights
attached to the links. Each link is given as an ordered pair <j,i>, where j and
i are indexes of nodes U;jand U;. This pair indicates a directed link from U;
to U;. Similarly, Wj; is a number (weight) attached to the link from U; and U;.

The set of linear input functions, In, consists of a function in; for each
unit U;.

in;(a;) = Z W;a;
J

where a; is the output of the node U;, which serves as input for node U; and a;
is the set of all such inputs to the node U;. Each output a; is called an activa-
tion level. This output from Ujis weighted by the Wj, The functions, in;, are
interpreted as the total weighted input for the unit U;.

An activation level for input nodes, Uy, is taken from external (envi-
ronment) nodes, which do not belong to the neural network. Usually, a set
of these input values is called an example (instance), e. Similarly, the out-
put nodes, Uqw, deliver values into some external nodes, which also do not
belong to the neural network.

The non-linear activation function, g, converts the weighted input into
the final value that serves as unit’s activation value, a;. The step and sig-
moid functions are typical activation functions:

Lifx2t
= s ] id(x) = '
(%) {0,ifx<t sigmoid(x) = -

The parameter t in the step function, s, is a biologically motivated threshold.
If a node 1s interpreted as a neuron t represents the minimum total weighted
input needed to fire the neuron.

In these terms, a neural network can be viewed as a set of complete proc-
essing nodes, C={C;}, where each node C; consists of three components:

Ci=<input links, output links, current activation level>.
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In this way, information processing is encapsulated in the nodes. Each node
uses only local inputs from its neighbors and therefore each node is inde-
pendent of the rest of the network. This processing node can compute and
recompute an activation level many times.

Figure 2.1 presents an example of a neural network used for forecasting
financial time series. This example is considered in detail in Section 2.6.

input layer output layer
Probability of
positive changes
of time series
®

wﬁn layer

-‘-

®
22N *.0."
Yo
(] Probability of
negative changes

of time series

Figure 2. 1. Recurrent Neural Network for financial time series forecasting

24.2. Steps

Each processing unit in neural network performs a simple computation.
Based on the input signals from its input links, the unit computes a new ac-
tivation level for its output link. The major steps of the generic neural net-
work learning method are presented in Table 2.2.

Table 2.2. Steps to build a neural network.

1. Define appropriate units (input, output, hidden) and their number.

2. Define connections of units to form a network.

3. Initialize the weights of the network.

4. Select the examples to train the network.

5. Define encoding the examples in terms of inputs and outputs of the network.

6. Adjust (train) the weights using a learning algorithm applied to a set of training exam-
ples to minimize forecasting errors.
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Table 2.3 shows the mechanism for implementing the most important
step (#6) of adjusting weights [Russel, Norvig, 1995]. This mechanism of
updating a multilayer neural network is called the backpropagation
method. The method has a tuning parameter a, called the learning rate.

Table 2.3. Update the weights in network (backpropagation method)

Step 6.1. Compute the complete output error Err® =T°—0° for all outputs O° and errors
A for each unit j in the output layer for an example e, where T¢, is the observed output
value from example e.
Step 6.2. Update the weights in the network using current weights Wj;, the tuning pa-
rameter (learning rate), o, the current activation value a; the error Err®; for example e and
the derivative of the activation function g'(in;) for each unit j leading to the output layer:
wji +ox ajx El‘]’ei X g'(il’li) o le'
Step 6.3. Compute the error at each node j
g'{iﬂj]E;Wj', A o A;
Step 6.4. Update the weights leading into the layer, using values I, from input layer, corre-
sponding to training examples, e.
Wkli+ax Ikx .ﬁj —)WEL

24.3. Recurrent networks

A neural network can be designed with or without loops. Neural net-
works without loops are called feedforward networks. Recurrent neural
networks (RNN) [Elman, 1991] are artificial neural networks with loops.
They use outputs of network units at time t as the input to other units at time
t+1. Specifically, a recurrent network can be constructed from a feedforward
network by adding:

— anew unitb to the hidden layer, and

— anew input unit c(t).

The value of c(t) is defined as the value of unit b at time t-1, i.e., c(t)=b(t-1).
In this structure, b depends on both the original input x(t) and on the added
input c(t). Therefore, it is possible for b to summarize information from ear-
lier values of x that are arbitrarily distant in time [Mitchell, 1997].

Mitchell also pointed out that these recurrent networks have an important
interpretation in financial time series forecasting. Let T(t+1) be the stock
price on date t+1. This stock price should be predicted using some economic
indicator x(t) on the date t and values of x on previous days arbitrarily dis-
tant in time. The RNN can be used for developing such forecasting model.

Alternative recurrent network structures can be designed to express more
complex recurrent relations, e.g., adding new hidden layers between the in-
put and unit b. Methods of training recurrent networks are described in
[Mozer, 1995]. Despite the relative complexity of recurrent networks, they
have unique advantages in representing distant relations in time series. In
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section 2.6, we review some financial applications of recurrent neural net-
works.

24.4. Dynamically modifying network structure

In sections 2.1-2.3, we assumed a fixed static network structure, iec.,
fixed numbers and types of network units and interconnections. Selection of
the structure of a neural network is a most informal, expert-dependent
task, but a neural network’s performance, generality, accuracy, and training
efficiency depend heavily on this structure.

The dynamically modifying network approach tries to tune a network
structure in two opposite ways [Mitchell, 1997]:

1. begin with a network containing no hidden units (perceptron), then

grow the network by adding hidden units until the training error is re-

duced to some acceptable level, or
2. begin with a complex network and prune it as certain connections are

found to be nonessential.

According to Mitchell [1997], in general, techniques for dynamically
modifying network structure have met with mixed success. From our view-
point, this mixed success can be “credited” partially to the search methods
used in the space of “black box™ neural networks. In this space, the majority
of searched network structures can be irrelevant. And only after a network is
found, can it be transformed into a meaningful “IF-THEN” rule form. We
consider this matter in later chapters.

2.5. Neural networks and hybrid systems in finance

Referring to the wide use of neural networks Rao and Rao [1993] say:
“The vast interest in neural networks during the recent years results from the
generalization accepted by (instance) example-based learning systems. It
also results from the capability of the networks to form an arbitrarily close
approximation to any continuous non-linear mapping.”

Indeed, neural networks are widely used in finance. Many reviews and
books are available, including [Abu-Mostafa, Moody, Weigend, 1996
Trippi, Turban, 1996; Azoff, 1994; Freedman, et al., 1995; Van Eyden,
1996; Jurik, 1993; Caldwell, 1994ab; Wong, 1994; Deny, 1994; Bandy,
1994; Obradovic, 1997; Pan et al., 1997].

These publications cover basic neural network examples, backpropaga-
tion, and data preprocessing as well as more advanced issues. These issues
include neural network and fuzzy logic hybrid systems (see chapter 7) and a
variety of specific applications: neural network-based financial trading sys-
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tems and hybrid neural-fuzzy systems for financial modeling and forecast-
ing. Use of backpropagation neural networks in finance is exemplified in
the following study [Rao, Rao, 1993]. The neural network was developed
using 14 attributes listed in table 2.4. The network was designed to predict
the change in the closing price of SP500 from last week to this week. Ac-
cording to [Rao, Rao, 1993], these 14 delayed attributes used were able to
produce 0.6% prediction error on the test data (20 weeks).

Table 2.4. Input delayed attributes for SP500 forecasting

SP500 High, Low

NYSE Advancing/Declining issues
NASDAQ Advancing/Declining issues
NYSE New Highs/New Lows

NASDAQ new Highs/New Lows

NYSE Total Volume

NYSE Advancing/Declining issues volume
NASDAQ Total Volume

NASDAQ Advancing/Declining issues volume
Three-Month Treasure Bill Yield

30-Year Treasure Bond Yield

Gold

SP500 Closing price

This impressive prediction accuracy of 99.4%, raises a question: how
good is this prediction error for real trading? For example, in a
buy/hold/sell trading strategy, we are much more interested in the correct
forecast of stock direction (up/down) rather than the error itself. Graphical
data from [Rao, Rao, 1993, p.328] shows that in three weeks out of the 20
test weeks the expected change direction was opposite to the actual direc-
tion. Therefore, the actual accuracy of the forecast for a buy/hold/sell strat-
egy 1s 85%, which is really “quite good”, but not as impressive as 99.4%.

Preprocessing is widely used in general and financial neural network
applications. A common way of preprocessing is the use of sigmoid and
other transformations making values less than 1 [Rao & Rao, 1993]. The
purpose is to speed up neural network training. Care needs to be exercised,
however, since preprocessing may corrupt a hidden law, that should be dis-
covered and/or used in later analysis and stock forecasting. For example,
independent sigmoid preprocessing of three stock characteristics, volume
(V), number of shares (N) and price per share (P), can violate the property:
V=N#P, This means that having transformed the data, the neural network
may not be able to discover a simple property such as:

IF price of stock A is larger than price of stock B and
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the number of shares of stock A is larger than number of shares of
stock B
THEN volume of stock A is larger than volume of stock B

Relational data mining methods discussed in chapters 4 and 5 do not violate
these kinds of properties. Also in chapter 5, we present another neural net-
work constructed for SP500.

General properties of neural networks in comparison with requirements of
stock price forecast are shown in tables 1.5 and 1.6 in chapter 1. These ta-
bles indicate three inadequacies of neural networks for stock price forecast-
ing related to (1) explainability, (2) usage of logical relations, and (3) toler-
ance for sparse data. On the other hand, neural networks provide several
advantages like high-speed response, tolerance for complexity, relative in-
dependence from an expert, flexibility, and compactness.

2.6. Recurrent neural networks in finance

Recurrent Neural Networks (RNN) have been used in several financial
applications [Laurence at al, 1996, Giles et all, 1997; Saad, Prokhorov,
Waunsch, 1998]. In particular, RNN were developed for the prediction of
daily foreign exchange rates in combination with other techniques. In
[Laurence at al, 1996, Giles et all, 1997], the authors report significant pre-
dictability in comprehensive experiments covering five different foreign
exchange rates. The data consists of 3645 data points for each exchange rate
covering the period from 1973 to 1987. They include daily closing bids for
five currencies: (German Mark (DM), Japanese Yen, Swiss Franc, British
Pound, and Canadian Dollar) with respect to the US Dollar.

The use of a recurrent neural network is important for two reasons. First,
the model addresses the temporal relationships within a time series by
maintaining an internal state. Secondly, interpretable rules (understandable
by humans) can be extracted from the trained recurrent network Specifically
the used network consists of:

— Three input neurons. The first input node (neuron) is used to enter a con-
densed representation of the time series data x(t), x(t-1),x(t-2),...,x(t-k)
for k time intervals. Delayed inputs are used for the other two input neu-
rons, aiding in the training process.

— One hidden layer with five fully connected neurons.

— Two output neurons. The first output is trained to predict the probability
of a positive change (“up learning”), and the second output is trained to
predict the probability of a negative change (“down learning”).

This network is presented in figure 2.1 in section 2.4. The condensed
representation, called an index, is used to keep the neural network smaller.
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Giles et al. [1997] use the self-organizing map, or SOM technique [Koho-
nen, 1995] to get the index. This is an unsupervised learning process,
which learns the distribution of a set of patterns without any class informa-
tion. The SOM condenses each instance x with k components, X, X2,X3, ...,
Xy, and presents it as an instance y with s components, yi, Y2,¥3, -5 ¥Ys
where s is significantly smaller than k. In the process of transformation
SOM tries to keep distances between instances in the condensed space Y
similar to the distances in the original space X. The networks were trained
with backpropagation through time for 500 updates.

Rule Extraction from Recurrent Neural Network. Table 2.5 presents
the steps of an algorithm for extracting rules from a recurrent neural network
and table 2.6 presents the results of this algorithms -- extracted forecasting
rules based on [Laurence at al, 1996, Giles et all, 1997]. This is a set of
meaningful symbolic rules extracted from a time series with a significant
noise level. Understanding the operation of a neural network can be gained
by the extraction of rules.

The steps shown in table 2.5 produce the sets of rules presented in table
2.6. Figure 2.2 shows the third set of rules as graphical structure. This
structure is adapted from [Laurence et al, 1996, Giles et al, 1997]. Mathe-
matically each extracted structure is defined by the set ordered triples {state,
input, next state}. These triples are called a Markov chain or discrete
Markov process ({state, input, next state}), which is equivalent to deter-
ministic finite state automata (DFA).

Table 2.5. Steps of the algorithm for extracting rules from trained network
Step 1. Cluster the activation values of the recurrent state neurons [Kohonen, 1995].
Step 2. Assign states to the clusters.
Step 3. Insert transitions between the clusters on the relevant input symbols.

Table 2.6. Rules extracted from Recurrent Neural Network.

Set of Extracted forecasting rules
rules
1 Rule 1. IF the last change in the series was negative

THEN the next change will be positive.
Rule 2. IF the last change in the series was positive
THEN the next change will be Negative.
2 Rule 1. IF the last change in the series was Negative
THEN the next change will be Positive
Rule 2. IF the last change in the series was Positive
THEN the next change will be Positive
3 Rule 1. IF the last change in the series was Positive
THEN the next change will be Positive.
Rule 2. IF the last change in the series was Negative and previous
change was not Positive THEN the next change will be Positive.
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Figure 2.2 uses notation from [Laurence et al, 1996, Giles et al, 1997].
Transitions marked with a solid line correspond to predicting positive
changes and transitions marked with a dotted line correspond to predicting
negative changes. State 1 is the starting state ofthe DFA.

Figure 2.2. Sample deterministic finite state automata (DFA) extracted from trained financial
prediction networks

The recurrent neural network combined with extracting deterministic fi-
nite state automata and discrete Markov process form a hybrid approach in
data mining. As we have seen, this approach addresses the fundamental
problem of predicting noisy time series.

2.7. Modular networks and genetic algorithms

2.7.1. Mixture of neural networks

A neural network is applicable to any data in the domain. In other words,
its output can be computed for any input x from that domain. This property
leads to both a positive and a negative consequence. On the plus side, the
network covers a wide range of data. While alternatively, the design of a
single network covering a wide variety of regularities requires a significant
amount of training data in order to reach an appropriate accuracy for the
whole of the domain. For non-stationary financial data, this is often prob-
lematic. Therefore, some hybrid methodologies were offered to mix smaller
networks into financial forecasting [Wai Man Leung, et al., 1997]. Al-
though these networks may have different architectures, the general design
of such a hybrid system is presented on Figure 2.3.
Wai Man Leung, et al. [1997] offer the following training mechanism:

a) The individual networks are trained before training their combination
through gating network.

b) The gating network is trained with the same set of training data. For each
input test data, each network gives an output, which becomes the input to
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the gating network. The final combined result is the output of gating
network.
The gated network is trained to balance contributions of individual net-
works. We present a mixture of different data mining methods in more detail
in chapter 3 (section 3.5.4).

Gated
Daa | [ > |Network|™
D D

Figure 2.3. Mixture of neural networks

2.7.2. Genetic algorithms for modular neural networks

As we have already discussed, financial time series have specific draw-
backs, like poor signal-to-noise ratios, non-Gaussian noise distribution, and
limited training data. Traditional backpropagation neural networks can
address these problems using a mixture of smaller neural networks of differ-
ent architectures as described in the previous section. However, backpropa-
gation has other drawbacks:

— itdoes not work if the error functions A are not smooth (differentiable),
and

— itcan become trapped in a local minimum of the error function and
therefore it can miss the best neural network.

Feedforward Modular Neural Networks [Oliker, 1997] were designed to
meet these challenges for financial applications. Similar to the previously
discussed mixture of neural networks, this model consists of modular net-
works. Every one of the networks is trained by using a different set of fea-
tures.

The major difference from backpropagation neural networks is in apply-
ing genetic algorithms [Holland, 1975] to adjust the weights. Genetic algo-
rithms do not require smooth error functions for finding the best neural net-
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work as required for the backpropagation method. In table 2.7, these meth-
ods are compared for a stock market forecast problem. In [Oliker, 1997], the
distributed genetic algorithm is used for a local search of both the connec-
tivity and weights of each unit in the network. Therefore, the method elimi-
nates the need for a predetermined network structure.

Table 2.7. Comparison of methods and problem requirements

Parameters of methods and Feedforward Backpropaga- Requirements of
requirements of the problem  modular neural tion stock market
networks modular neural  forecast prob-
network lem
Mathematical technique Distributed ge- Backpropaga-
netic algorithm tion
Ability to design smaller Yes Yes Desirable prop-
networks with a small num- erty
ber of hidden units
Ability to work well on time  Yes Yes Yes

series with significant noise

(poor signal-to-noise ratios)

Ability to perform well on Yes Yes Yes
time series with non-

Gaussian noise distribution

Ability to perform well on Yes Yes Yes

Data with non-stationary

regularities

Ability to perform well on Yes Yes Yes

Data with non-linear regu-

larities

Ability to work in multimo-  Yes No Yes

dal and non differentiable

space

Free of the need to calculate  Yes No Desirable prop-
derivatives of the error erty

function

Free of the need to restrict Yes, to some No Desirable prop-
artificially the number of extend erty
para-meters (layers) of the

model

Free of the need for a prede-  Yes, to some No Desirable prop-
termined network structure  extend erty

Genetic algorithms [Holland, 1975] are an evolutionary training ap-
proach, attractive because of their ability to handle the global search prob-
lem in a set of alternative solutions. The traditional sequential search ap-
proach (hill-climbing) assumes that the next alternative to be examined is
selected using a single preceding alternative. Fundamental advantages of
genetic algorithms are based on use of parallel processing and evolutionary
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adaptation. Specifically in genetic algorithms, several new alternatives are
generated using already examined alternatives. An adaptive process of gen-
erating new alternatives is inspired by genetics. Each of the alternatives is
viewed as a string of search parameters, called a “genotype”. The set of al-
ternatives is considered as a population. The initial genotypes of the popu-
lation are generated randomly. Then objective function values are computed
for all initial genotypes. The next set of examples (“next generation of
genotypes”) is generated using these values and transitional operators.
These operators are also inspired by genetics and allow us to combine com-
ponents of strings similar to genetic processes like reproduction, crossover
and mutation. See [Holland, 1975; Oliker, 1997] and others for further ex-
planations.

In [Oliker, 1997] each new generation is represented by its set of weights
and connectivities within the neural network. The goal is find the network
with the best set of weights (string, “genotype”). Each generation produces
the network’s current error values and the next generation. Error values are
tested against the required network’s accuracy and/or other criteria.

2.8.  Testing results and complete round robin method

2.8.1. Introduction

In sections 2.4 through 2.7, we presented an overview of the neural net-
works and combinations of the neural networks and their financial applica-
tions. In this section, we will present an in-depth look at testing results pro-
duced by neural networks and other learning methods. In particular, we de-
scribe a novel extension of the round robin testing method. The novelty in-
cludes a mathematical mechanism based on the theory of monotone Boolean
functions. The software implementation itself features important character-
istics, which will be discussed below. Finally, we present computational ex-
periments with SP500 using this tool.

2.8.2. Approach and method

The reliability of data mining methods depends on testing discovered
patterns in the data before they are used for their intended purpose. One
common approach used to test learned neural networks and learned regu-
larities is to divide the data set into two parts. For instance, approximately
30% of the data can be chosen at random. This subset becomes the testing
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data used to validate the patterns discovered by the data mining method after
processing the remaining data.

This process is repeated several times and if results are similar to each
other than a discovered regularity can be called reliable for data D. Three
major methods for selecting subsets of training data are known as:

1. Random selection of subsets,
2. Selection of disjoint subsets,
3. Selection of subsets according the probability distribution.

These methods are sometimes called, respectively, bootstrap aggregation
(bagging), cross-validated committees, and boosting [Dietterich, 1997].

The random selection of subsets, or bagging method, uses a training set
that consists of a sample of m training examples drawn randomly with re-
placement from the original training set of N items.

The second method divides the training sets into subsets. For example,
the training set can be randomly divided into 10 disjoint subsets. Then 10
overlapping training sets can be constructed by deleting a portion of these
subsets. The same procedure is employed to construct training sets in
10-fold cross-validation [Dietterich, 1997]. Ensembles constructed in this
way are sometimes called cross-validated committees.

The third method, computes the probability distribution pAx) over the
training data and generates subsamples of size k according to this distribu-
tion. Moreover, this distribution is systematically adjusted for paying more
attention to cases which failed to learn when using previous subsamples.
This method is presented in more detail in chapter 3 (section 3.1.4) and in
[Dietterich, 1997].

Problems of subsampling. Different subsamples of a sample, Tr, can be
governed by different regularities. Rejecting and accepting regularities
heavily depends on the accidental splitting of Tr. This is common for non-
stationary financial time series, e.g., bear and bull market trends for different
time intervals.

Let subsets A and B be chosen from Tr as testing data and their compli-
ments, A’ and B’, in Tr be chosen as training data sets:

Tr=A’UA, Tr=B’UB.

Further suppose that subsets A and B satisfy two different regularities,
and that A and B do not intersect but occupy complimentary parts of Tr as
shown in figure 2.4, covering 100% of the sample Tr.

Here regularity #1 discovered on A is useless for A’, which is actually B and
thus governed by regularity #2. Similarly, regularity #2 discovered on B can
not be confirmed on B’ which is governed by regularity #1. In this extreme
50:50 case, the splitting test approach reasonably rejected both regularities
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as universal for Tr. Now assume that 70% of Tr is governed by regularity #2
and only 30% by regularity #1. If accidentally, test set A consists of all cases
governed by regularity #1, then regularity #2 found on A’ will be rejected
although it is true for 70% of the sample Tr.

A A’ C
regularity |
(bear market)
Training sample Tr Independent
data C
B’ B Cc
regularity 2
(bull market)

Figure 2.4. Training subsets for non-stationary data

These examples show that test results can be sensitive to a particular split-
ting of Tr. Therefore, such tests can reflect rather an arbitrary splitting in-
stead of the real strength of regularities on data.

A more comprehensive approach is the Round Robin. It is designed to
eliminate arbitrary splitting by examining several groups of subsets of Tr. If
these groups do not cover all possible subsets then the round robin approach
faces the problem of selecting independent subsets and determining their
sizes.

The Complete Round Robin method examines all groups of subsets of
Tr. The obvious drawback with the complete round robin is that there are 2"
possible subsets, where n is the number of groups of objects in the data set.
Learning 2" neural networks is a computational challenge.

Below we present an original implementation of the complete round robin
method and techniques to speed up required computations [Kovalerchuk et
al, 1996] along with experimental testing of 1024 neural networks con-
structed using SP500 data. This method uses the concepts of monotonicity
and multithreaded parallel processing for Windows NT. It is applicable to
both attribute-based and relational data mining methods.

The method was implemented for backpropagation neural networks with
participation a group of Central Washington University computer science
students. C. Todd, D. Henderson and J. Summet are major contributors to
the project.

Let M be a data mining method and D be a set of N objects, represented
by m attributes. D={d;},i=1,...,N, di=(d;, diz,..., din). Method M is applied
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to data D for knowledge discovery. We assume that data are grouped, for
example in a stock time series, the first 250 data objects (days) belong to
1980, the next 250 objects (days) belong to 1981, and so on.

To simplify the example, assume we have ten groups (years), n=10.
Similarly, half years, quarters and other time intervals can be used. There
are 2'® possible subsets of the data groups. Any of these subsets can be used
as training data.

If the data do not represent a time series, then all their complements
without constraint can be used as testing data. For instance, by selecting the
odd groups #1, #3, #5, #7 and #9 for training, permits use of the even groups
#2, #4, #6, #8 and #10 for testing.

Alternatively, when the data represents a time series, it is reasonable to
assume that test data should represent a later time than the training groups.
For instance, training data can be the groups #1 to #5 and testing data can be
the groups #6 to #10.

For our work, we have taken a third path by using the completely inde-
pendent, later data set C for testing. This allows us to use any of the 2'° sub-
sets of data for training.

The hypothesis of monotonicity is used below as a major assumption
with the following notation. Let Dy and D, be training data sets and let Per-
form and Perform be the performance indicators of learned models using
D, arld D,, respectively. We will consider a simplified case of a binary Per-
form index, where 1 stands for appropriate performance and O stands for
inappropriate performance. The hypothesis of monotonicity (HM) says
that:

IF D;2 D; THEN Perform;2 Perform,. 1)

This hypothesis means that IF data set Dy covers data set D, THEN per-
formance of method M on Dy should be better or equal to performance of M
on D,. The hypothesis assumes that extra data bring more useful information
than noise for knowledge discovery. Obviously, the hypothesis is not always
true. From 1024 subsets often years used to generate the neural network, the
algorithm found 683 subsets such that D; 2 D;. We expected that the signifi-
cant number of them would satisfy the property of monotonicity

P(M,D))2 P(M,D)

Surprisingly, in this experiment monotonicity was observed for all of 683
combinations of years. This is strong evidence for the use of monotonicity
along with the complete round robin method. In fact, the incomplete round
robin method assumes some kind of independence of the training subsets
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used. Discovered monotonicity shows that independence at least should be
tested.

Next, the concept of monotonicity is defined formally to be able to apply
the theory of monotone Boolean functions.

The error Er for data set D={d;}, i=1,...,N, is the normalized error of all
its components d;:

V(@) -Jd))
Er= =
ZI-I T(di)
Here T(d;) is the actual target value for d; and J(d;) is the target value fore-
cast delivered by discovered model J, i.e., the trained neural network in our

case.
Performance is measured by the error tolerance (threshold) Qo of error Er:

1,if Er<Q,
Perform=
erform {0,ifEr>Q0

Next, we introduce the hypothesis of monotonicity in terms of binary vec-
tors and the parameter Perform in order to be able to use methods from the
theory of monotone Boolean functions. Combinations of years are coded as
binary vectors vi=(vi;,Via...Viig) With 10 components from (0000000000) to
(IT11111111) with total 2"=1024 data subsets. In these binary terms, the
hypothesis of monotonicity can be rewritten as

IF v; > v; THEN Perform; 2 Perform; 2)

Here relation v;zv; (“no greater than”) for binary vectors is defined by the
ordinary numeric order relation “2” for the components of these vectors:

VizVy © vg2 Vik for all k=1,...,10.

Note that notevery v; and v; are comparable with each other by the “=” rela-
tion. More formally, we will present Perform as a quality indicator Q:

QM, D, Qg) =1 ¢ Perform=1, 3)
where Qo is some performance limit.  In this way, we rewrite (2)
IF v; = v; THEN Q(M, D;, Qo)2 Q(M, D;, Qo) C)

and obtain Q(M, D, Q) as a monotone Boolean function of D.
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The theory of monotone Boolean functions [Hansel, 1966; Kovalerchuk
et al, 1996] is a well-developed theory having mechanisms to speed up
computations. We exploit this theory to speed up the round robin method.
Consider a method M and data sets Dy and D; with D, contained in Dy. In-
formally, according to the hypothesis of monotonicity if it is found that the
method M does not perform well on the data Dy, then it will not perform
well on the data D, either. Under this assumption, we do not need to test
method M on Ds.

Our experiments with SPS00 shows that by eliminating these redundant
computations it is possible to run method M 250 times instead of the com-
plete 1024 times. The number of computations depends on a sequence of
testing data subsets D;. To optimize the sequence of testing, Hansel’s lemma
[Hansel, 1966, Kovalerchuk et al, 1996] from the theory of monotone Boo-
lean functions is applied to so called Hansel’s chains of binary vectors. The
mathematical monotone Boolean function techniques are presented in sec-
tion 10.

The general logic of software is the following. The set of Hansel chains is
generated first and stored. In the exhaustive case we need (1) to generate
1024 subsets using a file preparation program and (2) compute backpropa-
gation for all of them. Actually, we follow the sequence dictated by the
Hansel chains. Therefore, for a given binary vector we produce the corre-
sponding training data and compute backpropagation generating the Perform
value. This value is used along with stored Hansel chains to decide which
binary vector (i.e., subset of data) will be used next for learning neural net-
works. We consider next the implementation of this approach.

2.8.3. Multithreaded implementation

The computation process for the round robin method can be decom-
posed into relatively independent subprocesses. Each subprocess can be
matched to learning an individual neural network or a group of the neural
networks. The multithreaded application in C++ uses both these decomposi-
tions, where each subprocess is implemented as an individual thread. The
program is designed in such way that it can run in parallel on several proces-
sors to further speed up computations. Screen fragments and diagram of the
implementation for the backpropagation Neural Network are presented in
figures 2.5, 2.6, and 2.8.

Threads and the user interface. The processes described at the end of
the section 2.8.2 lend themselves to implementation by threads. The system
creates a new thread for the first vector in each Hansel chain. Each thread
accomplishes three tasks: training file preparation, backpropagation using



Numerical Data Mining Models and Financial Applications 53

this file, and computing the value Perform. When the thread starts, it paints a
small area within the Thread State Watcher on the form to provide visual
feedback to the user. The Perform value is extended, if possible, to the other
threads in the chain and the results are printed to a file.

1110100000
- 1110110000:0
- 1101110000:0

- 1011110000:0

- 11110010000

Figure 2.5. Fragment of Hansel chains used to construct threads

Threads are continually checking the critical section and an event state to
see if it is permissible for them to run. When a thread is finally to run, a
group of them will run at once. Since the starting of all the threads for each
vector occurs at the same time, the vectors are split up over several comput-
ers.

The main program acts as a client, which accesses servers to run threads
on different computers. On initialization, the client gathers user information
and sends sets of vectors to various servers. Then the servers initialize only
threads corresponding to the vectors they have been given. If a server fin-
ishes with all its assigned vectors it starts helping another server with the
vectors it has not yet finished. Instead of having one computer run 250+
threads, six computers can run anywhere from 9 to 90 threads. This provides
a speed up of approximately 6 times.

The client is made of two main components: the interface and the moni-
tor. Once settings are made through the interface, the simulation is started.
The monitor then controls the process by setting up, updating, and sendmg
work to all the connected servers. This information is communicated in the
form of groups of vectors. Once the servers receive their information, they
spawn threads to work on the assigned group of vectors.

Once the thread has reached a result (Perform value), the information is
communicated back to the monitor. The monitor then sends more work to
the server if any remains and updates the display to reflect the work that has
been done. Servers that are given work and fail to reply, have their work
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flagged and once all other results are collected, the flagged work is sent to a
different server. If there is still flagged work and no servers are responding,
the client itself will execute the remaining work.

Interface

v

Thread Monitor

1 Network Communication
Streams

Server | Server 2 Server 250
EEER

AN

Figure 2.6. Implementation diagram

Threads

2.84. Experiments with SP500 and neural networks

In section 2.5, the backpropagation neural network of Rao and Rao
[1993] which produced a 0.6% prediction error on the test data (50 weeks)
with 200 weeks (about four years) of training data was presented. Now we
consider the question - is this result reliable? In other words, will it be sus-
tained for wider training and testing data? In an effort to answer these ques-
tions, we used all available data associated with SP500 from [Rao, Rao,
1993] as training and testing data:

a) Training data -- all trading weeks from 1980 to 1989 and
b) Independent testing data -- all trading weeks from 1990-1992.

We generated all 1024 subsets of the ten training years (1980-1989) and
computed the corresponding backpropagation neural networks and their Per-
form values. Table 2.8 shows these results. A satisfactory performance is
coded as 1 and non-satisfactory performance is coded as 0. Each of the re-
sulting neural networks was tested on the same fixed independent testing
data set (1990-1992) with a 3% error tolerance threshold (Qe=0.03), which
is higher than 0.6% used for the smaller data set in [Rao, Rao, 1993].
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Table 2.8. Overall performance of 1024 Neural Networks

Performance Number of neural net- % of neural networks
Training Testing works
0 0 289 28.25
0 1 24 2.35
1 0 24 2.35
1 1 686 67.05

The majority of data subsets (67.05%, 686) satisfied the 3% error toler-
ance thus demonstrating sound performance of both training and testing
data. Unsound performance was demonstrated by 48 subsets (4.68%). Of
those 48 cases, 24 had Perform=1 for training and Perform=0 for testing
while the other 24 cases had Perform=0 for training and Perform=1 for
testing. Of course testing regularities found on any of those 48 subsets will
fail, even if similar regularities were discovered on the 686 other subsets
above. Using any of the remaining 289 subsets (28.25%) as training data
would lead to the conclusion that there is insufficient data to discover regu-
larities with a 3% error tolerance.

Therefore, a random choice of data for training from ten-year SP500 data
will not produce regularity in 32.95% of cases, although regularities useful
for forecasting do exist.

Table 2.9 presents a more specific analysis for 9 nested data subsets of
the possible 1023 subsets (the trivial empty case (0000000000) is excluded
from consideration). Suppose we begin the nested sequence with a single
year (1986). Not surprisingly, it turns out that this single year’s data is too
small to train a neural network to a 3% error tolerance.

Table 2.9. Backpropagation neural networks performance for different data subsets.

Binary code for set Training years Performance
of years 80 81 82 83 84 B85 86 87 88 89 |Training [Testing

90-92

0000001000 X 0 0
0000001001 X X 0 0
0000001011 X X X 0 0
0000011011 X X X X 1 1
0000111011 X X.- X X X 1 1
0001111011 X X X X X X 1 1
0011111011 X X X X X X | 1
0111111011 X X X X X X 1 1
1111111011 X X X X X X X X X 1 1

For the next two subsets, we added the years 1988 and 1989, respectively
with the same negative result. However, when a fourth subset was added to
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the data, 1985, the error moved below the 3% threshold. The additional sub-
sets with five or more years of data also satisfy the error criteria. This, of
course, 1s not surprising as we expect the monotonicity hypothesis will hold.

Similar computations made for all other 1023 combinations of years have
shown that only a few combinations of four years satisfy the 3% error toler-
ance, but practically all five-year combinations satisfy the 3% threshold. In
addition, all combinations of over five years satisfy this threshold.

Let us return to the results of Rao and Rao [1993] about the 0.6% error
for 200 weeks (about four years) from the 10-year training data. In general,
we see that four-year training data sets produce marginally reliable fore-
casts. For instance, the four years (1980, 1981, 1986, and 1987) corre-
sponding to the binary vector (1100001100) do not satisfy the 3% error tol-
erance when used as training data. A neural network trained on them-failed
when it was tested on 1990-1992 years.

90 _
80 & ——————— ] —_—
2 2 K\_ N E—
2 80 R
- B N~ \ N
€40 — \\\\ R
g 30 — —
5 20 [ \__ AN ]
* 10 t— — Q—— i
0 . % &
<0,0> <1,1> <0,1> <1,0>
Performance <training, testing>
‘_.-_Er. tolerance=3.5% —e— Er.tolerance=3.0% —a—Er. 1oleranca=2.0%]

Figure 2.7. Performance of neural networks for error tolerance 3.5%, 3.0% and 2.0%.

Figure 2.7 and table 2.10 present further analyses of the performance of the
same 1023 data subsets, but with three different levels of error tolerance, Qy:
3.5%, 3.0% and 2.0%. The number of neural networks with sound perform-
ance goes down from 81.82% to 11.24% by moving error tolerance from
3.5% to 2%. Therefore, neural networks with 3.5% error tolerance are much
more reliable than networks with 2.0 % error tolerance. A random choice of
training data for 2% error tolerance will more often reject the training data
as insufficient. However, this standard approach does not even allow us to
know how unreliable the result is without running the complete 1024 subsets
in complete round robin method.

Running a complete round robin is a computational challenge. Below we
present results of computational experiments showing that monotonicity and
multithreading significantly decrease the computation time.
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Table 2.10. Overall performance of 1024 neural networks with different error tolerance

Error toler- Performance Number of neural % of neural networks
ance Training | Testing networks
3.5% 0 0 167 16.32
0 1 3 0.293
1 0 6 0.586
1 1 837 81.81
3.0% 0 0 289 28.25
0 1 24 2.35
1 0 24 2.35
1 1 686 67.05
2.0% 0 0 845 82.60
0 1 22 2.150
1 0 31 3.030
1 1 115 11.24

Use of monotonicity with 1023 threads decreased average runtime about
3.5 times from 15-20 minutes to 4-6 minutes in order to train 1023 Neural
Networks in the case of mixed 1Is and Os for output. Different error tolerance
values can change the output and runtime. For instance, we may get extreme
cases with all 1’s or all 0’s as outputs. Table 2.11 shows the result obtained
for the extreme case where all 1’s were produced as output.

Table 2.11. Runtime for different error tolerance settings

Method

Average time for 1023
Neural Networks
1 Processor, no threads

Average time for 1023
Neural Networks
1 Processor, 1023 threads

Round-Robin with monotonicity 15-20 min. 6-4 min,
for mixed 1’s and 0’s as output
Round-Robin with monotonicity 10 min. 3.5'min.

for all 1’s as output

In addition, a significant amount of time is taken for file preparation to
train 1023 Neural Networks. The largest share of time for file preparation
(41.5%) is taken by files using five years in the data subset (table 2.12).

Table 2.12. Time for backpropagation and file preparation

Set of years % of time in file preparation % of time in Backpropagation
0000011111 41.5% 58.5%
0000000001 36.4% 63.6%
1111111111 17.8% 82.2%

Backpropagation neural networks also were ran on another set of SP500
data (training data - daily SP500 data from 1985-1994, and testing data --
daily SP500 data from 1995-1998). Figure 2.8 presents a screen shot of the
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performance of 256 backpropagation neural networks for these data. Error
tolerance in this test was chosen to be 3%. More than one-thousand (1007)
neural networks out of 1023 total satisfied this error tolerance on both
training and testing data. The total runtime was 4.14 minutes using a single
processor. In this experiment, monotonicity allowed us to run 256 subsets
instead of 1023 subsets.
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Figure 2.8. Performance of 256 Neural networks on SP500 data.
2.9. Expert mining

Data mining vs. ‘“‘expert mining”. Data mining has a serious drawback:
if data are scarce then data mining methods can not produce useful regulari-
ties as discussed in section 8. An expert can be a valuable source of regu-
larities for situations where an explicit set of data either does not exist or is
insufficient. The serious drawback of traditional knowledge-based (expert)
systems in finance is the slowness of the knowledge engineering for
changing markets (see table 1.4, chapter 1). This includes the extraction of
trading rules and dynamic correction. Few trading rules work consistently
well across different kinds of markets, e.g,, trading rules, which work well
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for a bull market, may perform miserably in a bear market [Loofbourrow
and Loofbourrow, 1995].

In chapter 1, we mentioned that any expert can learn from already trained
artificial “experts” and human experts. This learning is called “expert
mining,” an umbrella term for extracting knowledge from “experts”. An
example of expert mining is extracting understandable rules from a learned
neural network, which serves as an artificial expert [Shavlik, 1994].

In this section, we present a method to help “mine” regularities from an
expert and to speed up this process significantly. The method is based on the
same mathematical tools of monotone Boolean functions we used in section
8 for testing learned models.

The essence of the property of monotonicity for this application is that:

Ifan expert believes that property T is truefor example x and attributes
of example y are stronger than attributes of x, then property T is also
true for example y.

Here the phrase attributes are stronger refers to the property that values of
each attributes of x are larger than the corresponding values of y. Informally,
larger is interpreted as “better” or “stronger.” Sometimes to be consistent
with this idea, we need to transform the coding of attributes.

The mentioned problem, slowness of learning of traditional expert sys-
tems, means that we need to ask experts too many questions when extracting
rules. That is, it takes too much time for real systems with a large amount of
attributes. The idea of the approach is to represent the questioning procedure
(interviewing) as a restoration of a monotone Boolean function interactively
with an “oracle” (expert). In the experiment below, even for a small number
of attributes (5), using the method based on monotone Boolean functions,
we were able to restrict the number of questions to 60% of the number
questions needed for complete search. The difference becomes more signifi-
cant for larger numbers of attributes. Thus, full restoration of either one of
the two functions fy and f3 (considered below) with 11 arguments without
any optimization of the interview process would have required up to 2" or
2048 calls to an expert. However, according to the Hansel lemma [Hansel,
1963, Kovalerchuk at al, 1996], under the assumption of monotonicity, an
optimal dialogue (i.e. a minimal number of questions) for restoring each of
these functions would require at most 924 questions:

IR 2 2xd62 = 924,
L5)"\s

This new value, 924 questions, is 2.36 times smaller than the previous upper
limit of 2048 calls. However, this upper limit of 924 questions can be re-
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duced even further. In particular, in one of the tasks by using monotonicity
and the hierarchy, the maximum number of questions needed to restore the
monotone Boolean functions was reduced first to 72 questions and then
further reduced to 46 questions using the Hansel lemma.

1 Develop a hierarchy of

Monotone Boolean functions
=1 i

2 Interactively restore each
function in the hierarchy
0

3 Combine functions into a
complete diagnostic function
E=1

Present the complete function
as a set of simple diagnostic rules:
IfAandBand C...and F Then Z

Figure 2.9. Major steps for extraction of expert diagnostic rules

Figure 2.9 presents the major steps of extraction of rules from an expert us-
ing this mathematical technique.

2.1 Expert confirms monotonicity and ‘nesting” properties
or redefines the attributes to confirm these properties

4
'2’2 Test expert opinion about monotonicity and “nesting”
properties against cases from the database

a

2.3 Analyze database cases that violate monotonicity
and “nesting”, reject “incorrect” cases

4

2.4 Infer function values for derivable cases
without asking an expert, but using the database of cases,
monotonicity and nesting properties

4

2.5 Interview an expert using a minimal sequence of
questions to completely infer a diagnostic function
using monotonicity and nesting properties

Figure 2.10. Tteratively restoring functions in hierarchy
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The actual number of questions asked was about 40 questions for the two
nested functions, i.., about 20 questions per function. This number should
be compared with the full search requiring 2" or 2048 questions. Therefore,
this procedure allowed us to ask about 100 times fewer questions without
relaxing the requirement of complete restoration of the functions. The for-
mal definitions of concepts from the theory of monotone Boolean functions
used to obtain these results are presented in section 2.10.

Figure 2.10 details the sequence of actions taken to accomplish step 2,
i.e., restoring each of the monotone Boolean functions with a minimal se-
quence of questions to the expert. The last block (2.5) in figure 2.10 pro-
vides for interviewing an expert with a minimal dynamic sequence of
questions. This sequence is based on the fundamental Hansel lemma [Han-
sel, 1966; Kovalerchuk at al., 1996] and the property of monotonicity. Ta-
ble 2.13 shows the general idea of these steps. It represents a complete inter-
active session. A minimal dynamic sequence of questions means that we
reach the minimum of the Shannon Function, i.e., the minimum number of
questions required to restore the most complex monotone Boolean func-
tion of n arguments. This sequence is not a sequence written in advance. It
depends on the previous answers of an expert; therefore each subsequent
question is defined dynamically in order to minimize the number of total
questions.

Columns 2, 3 and 4 in table 2.13 present values of the three functions fj,
f, and y of five arguments chosen for this example. These functions repre-
sent regularities that should be discovered by interviewing an expert.

We assume here that each of these functions has its own target variable.
Thus, the first question to the expert in column 2 is: “Does the sequence
(01100) represent a case with the target attribute equal to 1 for £;?” Columns
3 and 4 represent expert’s answers for functions f and .

For instance, the binary vector (01100) could represent five binary stock
attributes, like up (1) and down (0) for the last five years--1995,1996,1997,
1998, 1999. These attributes could also be months, weeks, minutes, or other
stock features. Recall, in section 8 we considered binary vectors as repre-
sentatives for sets of objects. In this section, binary vectors represent sets of
attributes. The strength of the monotone Boolean function approach is that
it is applicable for both tasks in the same way after entities are coded by bi-
nary vectors and monotonicity is interpreted.

In our last example, (01100)=(xy, X3, X3, X4, Xs) and thus, x,=0. If the an-
swer 1s “yes” (1), then the next question will be about the target value for the
case (01010). If the answer is “No” (0), then the next question will be about
the target value for (11100). This sequence of questions is not accidental. As
mentioned above, it 18 inferred from the Hansel lemma.
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Table 2.13. Dynamic sequence of interviewing an expert
1 2 3 4 5 16 7 8
Vector f) f, W Monotone extension Chain Case

1-1 0-0 # #

(01100) | 1* 1* | i 1.2;6.3;7.3 | 7.1;8.1 Chain 1 1.1
(11100) | 1 1 1 6.4;7.4 5.1:3.1 1.2
(01010) | 1* 0* 1* 2.2,6.3;83 | 6.1;8.1 Chain2 | 2.1
(11010) [ 1 1* 1 6.4;8.4 3.156.1 22
(11000) | 1* 1* 1* 3.2 8.1;9.1 Chain3 | 3.1
(11001) |1 1 1 7.4,8.4 8.2,9.2 3.2
(10010) | 1* 0* 1* 4.2,9.3 6.1;9.1 Chain4 | 4.1
(10110) | 1 1* 1 6.4.9.4 6.2;5.1 4.2
(10100) | 1* 1¢ | o 5.2 7.1:9.1 Chain5 | 5.1
(10101) | 1 1 1 7.4.9.4 7292 5.2
(00010) | 0* 0 0* 6.2;10.3 10.1 Chain6 | 6.1
(00110) | 1* 1* 0* 6.3;10.4 7.1 6.2
(01110) | 1 1 1 6.4;10.5 6.3
(11110) | 1 1 1 10.6 6.4
(00100) | 1* 1* 0* 72,104 10.1 Chain7 | 7.1
(00101) | 1 1 0* 7.3;10.4 10.2 7.2
(01101) | 1 1 1* 7.4;10.5 8.2;10.2 7.3
(111o1) | 1 1 1 5.6 7.4
(01000) | 0* 0 1* 82 10.1 Chain8 | 8.1
(01001) | 1* 1* 1 8.3 10.2 8.2
(o1o1n) |1 1 1 8.4 10.3 83
(11011) | 1 1 1 10.6 9.3 8.4
(10000) | O* 0 1* 9.2 10.1 Chain9 | 9.1
(10001) | 1* I* 1 9.3 10.2 9.2
(1o0011) |1 1 1 9.4 10.3 93
(rorn) |1 1 1 10.6 10.4 9.4
(00000) | 0 0 0 10.2 Chain 10.1
(00001) | 1* 0* 0 10.3 10 10.2
(00011) | 1 1* 0 10.4 10.3
(0o11n) |1 1 1 10.5 10.4
o111 |1 1 1 10.6 10.5
[NHER 1 | 10.6
Total 13 13 12

Calls

Columns 5 and 6 list cases for extending values of functions without
asking an expert by using the property of monotonicity. Column 5 is for ex-
tending values of functions from 1 to 1 and column 6 is for extending them
from 0 to 0. In other words, if f{x)=1then column 5 helps to find y such that
f(y)=1. Similarly, column 6 works for f{x)=0 by helping to find y such that
f(y)=0. Suppose for case #1.1 an expert gave the answer f,(01100)=0, then
this 0 value could be extended in column 2 for case #7.1 (00100) and case
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#8.1 (01000). These cases are listed in column 6 in the row for case #1.1.
There is no need to ask an expert about cases #7.1 and #8.1. Monotonicity 1s
working for them. On the other hand, the negative answer £,(01100)=0 can
not be extended for f;(11100). An expert should be asked about fi(11100)
value. If the answer is negative, ie., f(11100)=0, then this value can be
extended for cases #5.1 and #3.1. Similarly to case #1.1 these cases are
listed in column 6 for case #1.2. The value of f; for cases #5.1 and #3.1 will
also be 0, because of monotonicity.
In other words, the values in column 2 for f; are derived by up-down
sliding in table 2.13 according to the following five steps:
Step 1.
Begin from the first case #1.1, here (01100).
Action: Ask the expert about the value of fi(01100).
Result: Here the expert reported that f,(01100)=1.
Step 2.
Action: Write the value for case #1.1. under column 2.
Here a "1™ is recorded next to vector (01100). Recall that an asterisk de-
notes an answer directly provided by the expert. The case of having the
true value corresponds to column 5. (If the reply was false (0), then we
write "0 " in column 2. The case of having a false value corresponds to
column 6.)
Step 3.
Action: Based on the response of true or false by the expert in step 1,
check column 5 or 6 respectively to extend the given value. Here we
check column 5 due to the response true for case #1.1.
Result: Extend the response to the cases listed. Here cases #1.2, #6.3, and
#7.3 are defined as 1. Therefore, in column 2 for cases #1.2, #6.3, and
#7.3 the values of the function f; must be (1). Note that now no asterisk is
used because these are extended values.
Step 4. (Iterate until finished).
Action: Go to the next vector (called sliding down), here case #1.2.
Check whether the value of fihas already been fixed. If the value of fj is
not fixed (i.e., it is empty), repeat steps 1-3, above for this new vector. If
fi is not empty (i.e., it has been already fixed), then apply step 3 and slide
down to the next vector. Here cases #6.4 and #7.4 are extended and then
we move to case #2.1. Note, that if the value has not been fixed yet, then
it will be denoted by fi(x) = e; for empty.
Result: Values of the function are extended. Here since f;(11100)=e, the
values of the function for the cases #6.4 and #7.4 are extended.
Here the total number of cases with an asterisk (*) in column 1 is equal to
13. For columns 3 and 4 the number of asterisks is 13 and 12, respectively.
These numbers show that 13 questions are needed to restore each of fyand f;
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and 12 questions are needed to restore W as functions of five variables. As
we have already mentioned, this is only 37.5% of 32 total possible questions
and 60% of the potential maximum of 20 questions generated by Hansel
lemma. Table 2.14 shows this result more specifically.

Table 2.14. Comparison of search results for five attributes.

Search methods fi, £ f; Decreasing coefficient
fi. Y
Non-optimised search (upper limit) 32 32 1 1
Optimal search (upper limit) 20 20 1.6 1.6
Optimal search (actual performance) 13 12 2.5 2.67

The next step is obtaining learned rules from table 2.13. In order to con-
struct rules, one needs to concentrate on the information contained in col-
umns 2, 3 and 4 oftable 2.13. One needs to take the first vector marked with
"I*" in each one of the chains and construct a conjunction of non-zero com-
ponents. For instance, for the vector (01010) in chain 2, the corresponding
conjunction i XpX4. Similarly, from chain 6 we have taken the "1" compo-
nents in the vector (00110) form the conjunction x3x4.

Based on these conjunctions, column 4 in table 2.13, and the steps listed
below, we obtained this logical expressions for w(x;,Xz,X3,X4,Xs):

W(X)=X1 X2 VX2X3 VXX VX 1X3 VXX VXX 53X VXX 3X 5V X3 VX VX3 X4 X5,
1. Find all the lower units for all chains as elementary functions.
2. Exclude the redundant terms (conjunctions) from the end formula.
Let us explain the concept of lower unit with an example. In chain 6 in table
2.13 the case #6.2 is a maximal lower unit, because f; for this case is equal

to 1 and the prior case #6.1 as an f; value equal to 0. Similarly, the case #6.1
will be referred to as an upper zero. The formula for yw(x) is simplified to

W(X)=XaVX1 VX3X4Xs.

Similarly, the target functions fi(x) and f2(x) can be obtained from columns
(2 and 3) in table 2.13 as follows:

f1(X)= X3X3 VXX VX1 X2 VX1 X4 VX1 X3VX3X VX3 VXX s VX X5 VX5,
fz(x)= X2X3VX1X2X4VX|X2VX|X3X4VX1X3VX3X4VX3VX2X5VX|X5VX4X5.

Hansel chains. This sequence of questions is not accidental. As men-
tioned above, it is inferred from the Hansel lemma to get a minimal number
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of questions in the process of restoring a complete rule. Here by complete
rule we mean restoring a function for all possible inputs.

Below we consider the general steps of the algorithm for chain construc-
tion. All 32 possible cases with five binary attributes (x;, Xz, X3, X4, Xs) are
presented in column 1 in table 2.13. They have been grouped according to
the Hansel lemma. These groups are called Hansel chains. The sequence of
chains begins from the shortest length chain #1 -- (01100) and (11100). This
chain consists only of two ordered cases (vectors), (01100) < (11100) for
five binary attributes. Then largest chain #10 consists of 6 ordered cases:

(00000) < (00001) <(00011) < (00111) < (01111) < (11111).

To construct chains presented in table 2.13 (with five dimensions like x;,
X2, X3, X4, Xs) a sequential process is used, which starts with a single attribute
and builds to all five attributes. We use a standard mathematical notation,
for example, all five-dimensional vectors are considered as points in 5-
dimensional binary “cube”,

Es ={0,1}x{0,1}x{{0,1}x{0,1}x{0,1}.

At first all 1-dimensional chains (in E;={0,1}) are generated. Each step of
chain generation consists of using current i-dimensional chains to generate
(i+1) dimensional chains. Generating of chains for the next dimension (i+1)
is four-step ‘“clone-grow-cut-add” process. An i-dimensional chain is
“cloned” by adding zero to all vectors in the chain. For example, the 1-
dimensional chain:

@<
clones to its two-dimensional copy:
(00) < (01).

Next we grow additional chains by changing added zero from cloning to 1.
For example cloned chain 1 from above grows to chain 2:

Chain 1: (00) < (01)
Chain 2: (10) < (11).

Next we cut the head case, the largest vector (11), from chain 2 and add it
as the head of chain 1 producing two Hansel 2-dimencional chains:
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New chain 1: (00) <(01) <(11) and
New chain 2: (10).

This process continues through the fifth dimension for <xy, X2, X3, X4, Xs>.
Table 2.13 presents result of this process. The chains are numbered from 1

to 10 in column 7 and each case number corresponds to its chain number,
e.g., #1.2 means the second case in the first chain. Asterisks in columns 2, 3
and 4 mark answers obtained from an expert, e.g., 1* for vector (01100) in
column 2 means that the expert answered “yes”. The remaining answers for
the same chain in column 2 are automatically obtained using monotonicity.
The value £;,(01100)=1 for case #1.1 is extended for cases #1.2, #6.3 and
#7.3 in this way. Hansel chains are derived independently of the particular
applied problem, they depend only on the number of attributes (five in this
case). The formal definitions of concepts from theory of monotone Boolean
functions, which were used to obtain these results and the results described
in section 2.8, are presented in section 2.10 below.

2.10. Interactive Learning of Monotone Boolean Functions

2.10.1. Basic definitions and results

Let E, be the set of all binary vectors of length n. Let x and y be two
such vectors. Then, the vector x = (X,X2,X3,...,Xs) precedes the vector y =
(Y1,¥2,Y35--,¥n) (denoted as: x < y) ifand only if the following is true: x; < i,
forall 1 si<n.

A Boolean function f(x) is monotone if for any vectors x, y € Eg, the
relation f{x) < f{y) follows from the fact that x < y. Let M, be the set of all
monotone Boolean functions defined on n variables.

A binary vector x of length n is said to be an upper zero of a function
f(x)eM,, if f{lx) = 0 and, for any vector y such that y > x, we have f{y)=1.
Also, the term level represents the number of units (i.e., the number of the
"1" elements) in the vector x and is denoted by U(x).

An upper zero x of a function fis said to be the maximal upper zero if
U(y)sU(x) for any upper zero y of the function f [Kovalerchuk, Lavkov,
1984]. The concepts of lower unit and minimal lower unit similarly are
defined similarly. A binary vector x of length n is said to be a lower unit of
a function f(x)eM,, if f(x) =1 and, for any vector y from E, such thaty < x,
we get f{y) =0. A lower unit of a function fis said to be the minimal lower
unit if U(x)<U(y) for any lower unit y of the function f. The number of
monotone Boolean functions of n variables, y(n), is given by:
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win)= 2&'” " J)(1 +&(n))

where 0 < g(n) < c(logn)/n and c is a constant (see [Alekseev, 1988; Kleit-
man, 1969]). Thus, the number of monotone Boolean functions grows ex-
ponentially with n. Let a monotone Boolean function f be defined by using a
certain operator As (also called an oracle) which takes a vector x =
(X1,X2,X3,-..,Xn) and returns the value of f(x). Let F = {F} be the set of all
algorithms which can solve the above problem and let @(F, f) be the num-
ber of accesses to the operator A¢ required to generate f(x) and completely
restore a monotone function feM,.
Next, we introduce the Shannon function ¢(»n) [Korobkov, 1965]:

@ (n) = min ;r:aglw(F,f) (4)

Consider the problem of finding all the maximal upper zeros (lower units) of
an arbitrary function feM, with by accessing the operator A¢. It is shown in
[Hansel, 1966] that for this problem the following relation is true (known as
Hansel's lemma):

oln)= (fn/ZJ) ¥ [fn/2j+ 1) kol

Here |n/2] is the closest integer number to n/2, which is no greater than n/2
(floor function). In terms of machine learning, the set of all maximal upper
zeros represents the border elements of the negative patterns. Similarly,
the set of all minimal lower units represents the border of positive patterns.
In this way, a monotone Boolean function represents two compact patterns.
Restoration algorithms for monotone Boolean functions which use Hansel's
lemma are optimal in terms of the Shannon function. That is, they minimize
the maximum time requirements of any possible restoration algorithm. To
the best of our knowledge, Hansel's lemma has not been translated into
English, although there are numerous references to it in the non-English lit-
erature (Hansel's results were published in French in Paris). This lemma is
one of the final results of the long-term efforts in monotone Boolean func-
tions started by Dedekind [1897].

2.10.2. Algorithm for restoring a monotone Boolean function

Next we present algorithm RESTORE, for the interactive restoration of
a monotone Boolean function, and two procedures GENERATE and
EXPAND, for manipulation of chains.
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Algorithm "RESTORE" f{x1,x3....%3)
Dimension n of the binary space and access to an oracle 4.

Input.

Output. A monotone Boolean function restored after a minimal
number (according to formula (5)) of calls to the oracle 4y

Method.

1. Construction of Hansel chains (see section 2.10.3 below).
2. Restoration of a monotone Boolean function starting from chains
of minimal length and finishing with chains of maximal length.
This ensures that the number of calls to the oracle 4,is no more than the

limit presented in formula (5).
Table 2.15. Procedure RESTORE
Set i=1; {initialization}
DO WHILE (function f{x) is not entirely restored)
Step 1: Use procedure GENERATE to generate element a;; which is a binary vector.
Step 2: Call oracle A;to retrieve the value of f{ay);
Step 3: Use procedure EXPAND to deduce the values of other
Elements in Hansel chains (i.e., sequences of examples in E,)
by using the value of f{a; ), the structure of element a; and
the monotonicity property.
Step4: Set i~ i+l;
RETURN
Procedure "GENERATE": Generate i-th element a; to be classified by

the oracle 4.

Input. The dimension 7 of the binary space.
Output. The next element to send for classification by the oracle 4.

Method: ~ Begin with the minimal Hansel chain and proceed to maxi
mal Hansel chains.
Table 2.16. Procedure GENERATE
IF i=1 THEN {where i is the index of the current element}
Step 1.1: Retrieve all Hansel chains of minimal length;
Step 1.2: Randomly choose the first chain C; among the chains retrieved
instep 1.1;
Step 1.3: Set the first element a; as the minimal element of chain C;;

ELSE
Set k=1 {where k is the index number of a Hansel chain};

DO WHILE (NOT all Hansel chains are tested)
Step 2.1: Find the largest element a; of chain C}, which still has no f{a,) value;

Step 2.2: If step 2.1 did not returned an element g, then randomly select the
Next Hansel Chain Cy.; of the same length / as the one of the current

chain Cy;
Step 2.3: Find the least element a; from chain C. ;, which still has no ffay

value;
Step 2.4: If Step 2.3 did not return an element a;, then randomly choose chain

Cy., of the next available length (1+1);
Step 2.5: Set k - k+1,
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Procedure "EXPAND": Assign values of f(x) forx < a; or x » ¢ in
chains of the given length / and in chains of the next length I+2. According
to the Hansel lemma if for n the first chain has even length then all other
chains for this n will be even. A similar result holds for odd lengths.

Input. The ffay value.
Output. An extended set of elements with knownf{x) values.
Method: ~ The method is based on monotone properties:
IF x> @ and flay=1, THEN f(x)=1;and
IF x<a; and fla)=0, THEN f{x)=0.
Table 2.17. Procedure EXPAND

Step 1. Obtain x such that x < a; or X > a; and x is in a chain of the lengths | or 1+2.
Step2. IF flay=1, THEN V x (x > a,) set f{x)=1,

IF fla)=0, THEN V x (x < ;) set f{x)=0;
Step 3:  Store the f{x) values which were obtained in step 2;

2.10.3. Construction of Hansel Chains

Several steps in the previous algorithms deal with Hansel chains. Next
we describe how to construct all Hansel chains for a given space E, of di-
mension n. First, we formally define a chain. A chain is a sequence of bi-
nary vectors (examples) @, @z ,...@% Gsp...s % such that ., is obtained
from a; by changing a "0" element to a "1". That is, there is an index k such
that e, = 0, oy.;4 = 1 and for any ¢#k, the following is true a;,=ay.;. For
instance, the following list <01000, 01100, 01110> of three vectors is a
chain. To construct all Hansel chains an iterative procedure is used. Let E,
={0,1}" be the n-dimensional binary cube. All chains for E, are constructed
from chains for E,.;. Therefore, we begin the construction with E;.

Chains for E;.

For E, there is only a single (trivial) chain and it is <(0), (1)>.

Chains for E.

First we consider E; and add at the beginning of each one of its chains
the element (0). Thus, we obtain the set {00, 01}. This set is called E;™. In
addition, by changing the first "0" to “1” in E;™", we construct the set E;™*
= {10, 11}. To simplify notation, we will usually omit "( )" for vectors as
(10) and (11). Both E;"" and E;™* are isomorphic to Ey, clearly,

E) = E)mn v E)m.
To obtain Hansel chains the chain <00, 01> should be adjusted by adding

the maximum element (11) from the chain <10, 11>. Thus, we obtain a new
chain <00, 01, 11>. Then element (11) is removed from the chain <10, 11>.
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Hence, the two new chains: <00, 01, 11> and <10> are obtained. These
chains are the Hansel chainsfor E;, i.e., E;= {<00, 01, 11>, <10>}.
Chains for E;.
The Hansel chains for E; are constructed in a manner similar to the
chains for E,. First, we double (clone) and adjust (grow) the Hansel chains
of E, to obtain E;™ and E;™*. The following relations is also true:

Ej = Ejmin' U Ejmax’

where Es™” = {<000, 001, 011>, <010>}, E;"* ={<100, 101, 111>, 110>}.
We then proceed with the same chain modification as for E, That is,
first we choose two isomorphic chains. Let it be two maximal length chains

<000, 001, 011> and <100, 101, 111>,
Next the maximal element (111) from <100, 101, 111> is added to <000,

001, 011> and drop it from <100, 101, 111>. Thus, the two new chains are
obtained:

<000, 001, 011, 111> and <100, 101>,
This procedure is repeated for the rest of the isomorphic chains <010> and
<110>. In this simple case just one new chain <010,110> exists (the second
chain is empty). Therefore, £3 consists of the three Hansel chains

<010, 110>, <100, 101> and <000, 001, 011, 111>,

Figure 2.11 depicts the above issues. Similarly, the Hansel chains for
E, ....E, are constructed recursively using the Hansel chains of Ej,...,En.;.

10_Egm 1 1

o1
— =

00 E;m 0l 0l

110 Ey™ 111 110 1

010 010 __;
/ /lm':D y 101

000 E,m» 001 000 001

Figure 2. 11. Construction of Hansel chains for E;



Chapter 3
Rule-Based and Hybrid Financial Data Mining

Math is like love -- a simple idea but it can get complicated
R. Drabek

3.1.  Decision tree and DNF learning

3.1.1. Advantages

Neural Networks provide a high level of predictive accuracy in many ap-
plications. However, their learned solutions do not facilitate human inspec-
tion or understanding. In contrast, “symbolic'' learning systems usually
produce solutions much more amenable to human comprehension [Graven,
Shavlik, 1997]. They are based on discovering rules such as those that in-
duce decision trees. For instance, rule R:

IF attribute V (stock price) is greater than $70 and
attribute V; (trade volume) is greater than $500,000

THEN attribute V3 (stock growth) will be positive (V3>0)
for the next day.

is much more comprehensible than equation E:
3.5678V(£)+0.036TV,(t)+0.00754V(t) Va(t) +0.00126 7(V 1 (1))*=V(t+1).

Both can be wrong, but an expert can more easily test rule R. A correct rule
itself has a value for an expert because it provides some explanation power.
It is hard to use equation E for explanation without additional studies like
the sensitivity analysis of output in econometrics with changing inputs.
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Nevertheless, sensitivity analysis does not have the explanation power of
logic rules. Rules can be constructed using sensitivity analysis, but it seems
much more natural to begin by directly constructing rules. If this attempt
fails, then equations could be constructed. Therefore, there are two major
advantages of the comprehensibility of learned solutions:

— The confidence of users about the system’s decisions (e.g., investment
decision without confidence about the system is questionable);

— The importance of understandable rules that are behind the system’s
decisions. New rules may be even more valuable for a user than deci-
sions themselves. They generate decisions and give generalized knowl-
edge.

Many decision tree learning methods were developed over the last 30 years

[Mitchell, 1997, Quinlan, 1993] and successfully used in financial and

banking applications such as assessing the credit risk of loan applicants.

Actually, each learned decision tree is a set of human readable IF-THEN

rules. The term “decision tree” reflects a specific way of discovering and

representing rules. This way of discovering creates an important advantage
of decision tree learning -- discovered rules are consistent. There is no
contradiction between rules extracted from any given learned decision
tree. On the other hand, rules discovered independently may contradict each
other. This is typical if the training data contain significant noise. Therefore,
readability and consistency are valuable properties of decision tree learning.

3.1.2. Limitation: size of the tree

In this section, we discuss the limited expressive power of decision
trees. There are many consistent sets of rules, which cannot be represented
by a relatively small single decision tree [Parsaye, 1997]. For example hav-
ing data from table 3.1 we may wish to discover rules, which will describe
the behavior of target T as a function of X, X, X3 and x4.

Target T in table 3.1 is governed by simple rule R1:

IF (x;=1 & x,=1) OR (x;=1 & x,=1) THEN T=1

The decision tree equivalent to this rule is shown in figure 3.1. This kind of
rule is called a prepositional rule [Mitchell, 1997]. Propositional rules op-
erate only with logical constants in contrast with first-order rules operating
with logical variables. We will discuss first order rules in chapter 4, here
we focus on decision trees. Rule R1 and its equivalent decision tree in figure
3.1 belong to the relatively restricted language of propositional logic.

Let’s take x=(x},X2,X3,X4)=(0,0,0,0). This x is shown in the first line in ta-
ble 3.1. We feed the decision tree in figure 3.1 with this x. Node x, called
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the root is the beginning point. Here x; =0, therefore we should traverse to
the left from the root. Then we test the value of xa, which is also equal to 0.
Next x3 and x4 are tested sequentially. Finally, we come to the leftmost ter-
minal node with a 0 value for the target attribute.

Table 3.1. Training data

X X2 X3 X4 Target T

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

X
YN
X, X;
ATVA
A N Ty »

AARANEA

F o4
Xooo X X Xgo X Xy Xy X
o5 o\t o4 g\t 0% of\1 & i1 0/
r v v v VY | 2R T A
00 01000O1I0CO0OO0OT1TTTI1TI 1

Figure 3.1. Decision tree
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The tree in figure 3.1 has 31 nodes and can be simplified. For instance,
the four rightmost terminal nodes on the bottom line produce the same
value, 1. We merge them by assigning the rightmost node x; (in the third
line) as a new terminal node. This node is marked in bold and all edges de-
scending from this x3 are eliminated (represented by dotted lines in figure
3.1). Similarly, other redundant nodes are merged. Finally, the decision tree
has 19 nodes shown in bold in 1.1. This 1s significantly less then the total
number of initial nodes, 31. Moreover, the new tree is also redundant. Two
subtrees beginning from the leftmost x; on the line 2 are identical, i.e., inde-
pendent of the values of x3, the target values are the same. Therefore, x; can
be eliminated. The new simplified tree has 13 nodes. It is shown in bold in
figure 3.2.

N
/ / \
0/\1 /\ o """'a'

01
vV
00

Figure 3.2. Simplified decision tree

The tree in figure 3.2 can be written as a set of rules. Each rule represents
a path from the root to a terminal node. The IF-part ANDs all nodes of the
branch except the leaf and the THEN-part consists of the leaf (terminal
node). For example, the right-most branch of the tree in figure 3.2 can be
written as follows:

IF (x;=1 & x,=1 & x5=1 & x,=1) THEN T=1

This tree returns a solution (a 0 or 1 value of the target T in a terminal
node) for all possible combinations of the four binary attributes. We say
that a decision tree produces a complete solution if it delivers an output
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value for all possible input alternatives. There are many other trees, which
do not deliver complete solutions. For example, we can remove the right-
most branch of the tree in figure 3.2. The resulting shortened tree will not
deliver solutions for combinations of attributes x=(x; X X3Xs) With x;=1.

Often decision tree methods implicitly assume a close world: all positive
instances (i.e., with target values equal to 1, T=1) are presented in training
data. Obviously, this is a questionable assumption for many applications.
There is no guarantee that we are able to collect all positive instances. The
decision tree in figure 3.2 delivers a complete solution; therefore, the close
world assumption is satisfied for this tree. Hence it is enough to write only
three rules with positive solutions (T=1) to represent ail solutions given by
this tree completely:

IF (x;=1 & x5=1 & x4=1) THEN T=1
IF (x;=1 & x,=0 & x5=1 & x,=1) THEN T=1
IF (x)=1 & x;=1) THEN T=1.

We also can combine these rules into one rule,
Rule RT:

IF (x;=1 & x;=1 & x¢=1) OR
x=1 & x,=0 & x;=1 & x,=1) OR
(X1=1 &X2=1)

THEN T=1.

This single rule represents the tree from figure 3.2. It is called the disjunc-
tive normal form (DNF) of the rule. It is a special property of decision tree
methods that all rules have a specific DNF form, i.e., all AND clauses (con-

Jjunctions) include a value of the attribute assigned to the root. In rule RT
all AND clauses include the root x;. More generally in this type of rule,
many AND clauses have significant overlapping. For example in rule RT,
clauses (x;=1 & x3=1 & x=1), (x;=1 & x,=0 & x5=1 & x4=1) differ only in
x,=0. We call this specific DNF form of rule presentation the tree form of a
rule. The tree form of rules tends to be long for some simple non-redundant
DNEF rules like Rule RS:

IF (x;=1 & x,=1) OR (x5=1 & x,=1) THEN T=1.

The last form of rule is called a minimal DNF. The corresponding tree has 4
components (tree edges) like x;=1 and x4=1 in contrast with 9 components
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in the tree form of the same rule, RT. We show the comparative growth of
rule size in more detail below. Decision tree algorithms need a special crite-
rion to stop the search for the best tree, because the search time is growing
exponentially as a function of the number of nodes and edges in a tree.

The standard stopping criterion is the number of components (nodes,
edges) of the tree [Graven, Shavlik, 1997]. Therefore, if the search for rule
RT will be restricted to six components, rule RT will not be discovered by
the decision tree method, since rule RT has nine components in its [F-part.

Discovering rules without requiring the tree form of rules is called dis-
covering the disjunctive normal form (DNF) of rules. The MMDR
method (chapter 4) and the R-MINI method (section 3.2.3 in this chapter)
belong to this class.

Rule RS is represented using only four components in the IF-part (com-
parisons of values of attributes with 1): x;=1, xa=1, x3=1, x¢=1.1t can be
drawn as two small trees with five nodes each and 10 nodes total represent-
ing the rules:

IF (x,=1 & x,=1) THEN T=1,
IF (x5=1 & x4=1) THEN T=1.

These rules are shown in bold in figure 3.3.

X %
0/\1 0"\1
| 4
0/ 1 ?/\1 Qi 0/\1
Y v vy ¥ ]
0001 10 01

Figure 3.3. Two shorter decision trees

At first glance, the difference between trees in figures 3.2 and 3.3 is not
large. However, this difference will growing very quickly with the number
of pairs of attributes involved (see table 3.2).

For example to express rule RG

IF (x;=1 & x,=1) OR (x5=1 & x=1) OR
(xs=1 & x=1) OR (x7=1 & xs=1)
THEN T=1
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a tree having 8 levels and 61 nodes is needed in contrast to 20 nodes for the
set of separate small trees (see Table 3.2).

Table 3.2. Comparison of the number of nodes

Number | Number of nodes Number of | Number | Number of nodes in| Number of
of pairs | in the single tree | nodes in the set | of pairs the single tree nodes in the
of separate trees set of separate
trees
1 5 5 16 262141 80
2 13 10 17 524285 85
3 29 15 18 1048573 90
4 61 20 19 2097149 95
5 125 25 20 4194301 100
6 253 30 21 8388605 105
7 509 35 22 16777213 110
8 1021 40 23 33554429 115
9 2045 45 24 67108861 120
10 4093 50 25 134217725 125
11 8189 55 26 268435453 130
12 16381 60 27 536870909 135
13 32765 65 28 1073741821 140
14 65533 70 29 2147483645 145
15 131069 75 30 4294967293 150

The larger rule RL:
IF (x;=1 & x,=1) OR (x;=1 & x,=1) OR ( xs=1 & xs=1) OR
(x7=1 & xg=1) OR (x=1 & x;,1=1) OR ...OR (xp.;=1 & x,=1)
THEN T=1

requires a still larger tree. The general formula for the number of nodes N(k)
for one tree is:

N (k)=2N(k-1)+3,
and for the set of trees it is:
G(k)=5"k,
where k is the number of pairs such as (x7=1 & x;;y=1). These formulas are

tabulated in table 3.2 for computing the number of nodes for a single tree
and a set of decision trees equivalent to the single tree.
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Table 3.2 shows that to represent a rule like RL with 5 pairs (10 nodes)
we need 125 nodes in a single tree and only 25 nodes in a set of trees. For 10
pairs (20 nodes) this difference is much more significant: 4093 nodes vs. 50
nodes. For 30 pairs (60 nodes) we have about 4.29%10° vs. 150 nodes.

There are rules (prepositional rules), which are more complex, e.g.,

IF (x,<5)&(x2<3) OR (x,<7)&(x3>9) THEN Target=1.

Having a more complex task with more than two values for each attribute,
the numbers in table 3.2 become even larger for a single decision tree and
grow exponentially. Therefore, although a decision tree can represent any
propositional rule, this representation can be too large for practical use.
Other more general propositional and relational methods can produce
smaller rules in these cases (see Section 3.2.3 in this chapter and Chapter 4).

Table 3.3. Stock price data

Stock Fore- Target Signal Stock Fore- Target Signal
price casted indica- | ondatet price casted indica- | on date
On date stock tor on date t stock tor t
t price on price on
date t+1 date t+1
17.70 17.60 1 Sell 17.92 18.09 -1 Buy
17.60 17.72 -1 Buy 18.09 18.08 1 Sell
17.72 17.70 1 Sell 18.08 17.90 1 Sell
17.70 17.71 -1 Buy 17.90 17.75 1 Sell
17.71 17.94 -1 Buy 17.75 17.84 -1 Buy
17.94 18.08 -1 Buy 17.84 17.97 -1 Buy
18.08 18.16 -1 Buy 17.97 18.08 -1 Buy
18.16 18.02 1 Sell 18.08 18.10 -1 Buy
18.02 17.92 1 Sell 18.10 18.11 -1 Buy

Let us consider an illustrative example of discovering three simple trad-

ing rules using data from Table 3.3:

1. IF the stock price today (date t) is greater than the forecast price for to-
morrow (date t+1) THEN sell today;

2. IF the stock price today is less than the forecast price for tomorrow
THEN buy today;

3. IF the stock price today is equal to the forecast price for tomorrow THEN
hold.

In Table 3.3, a value of 1 indicates sell, while -1 indicates buy and 0 in-
dicates hold. This example allows us to illustrate the difference between the
methods. First, we discover rules 1-3 using Table 3.3 and the propositional
logic approach. Table 3.3 allows the extraction of a propositional rule PR.
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Prepositional rule (PR):

IF (a<17.71& b>17.7 ) OR {(17.71<a<17.9)&(b>17.8)]
OR [(17.9<a<18.06)&(b>18.0)]
OR [(18.06<a<18.2)&(b>18.08)]

THEN “sell shares on date t.”

The bold line in Figure 3.4 illustrates this rule. The area above the line cor-
responds to buy, the area below corresponds to sell and the line itself repre-
sents the hold.

18.2 -
; L
Tt
o ; LY e
_E Buy on ¢ate t o
18
. ' !
& 14— _ v .
c
o " Sell o date t
8 178 IR
o
§ *
2 177 2y
n
17.8 . ; i i
178 17.8 18 18.2
Stock price on date t

Figure 3.4. Diagram for decision tree boundary

We denote stock prices on date t (today) as a and stock prices on date t+1
(tomorrow) as b. Let’s apply this rule for (a,b)=(17.8, 17.5). All conjunc-
tions of the rule PR are false for (17.8, 17.5). Therefore, the rule does not
deliver a sell signal, which is wrong. Prepositional rule PR can also be dis-
covered as a decision tree (Figure 3.5).

This tree is mathematically equivalent to propositional rule PR and gives
the same incorrect buy/sell/hold signal as rule PR for a=17.8 and b=17.5.
Obviously, the correct answer should be “sell shares on date t” for these
data.

This example shows that decision tree learning cannot discover the
simple relational rule:

IF S(t+1)>S(t) THEN sell.
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Decision Tree

Root
|
i as17.7 ] ax17.71
............................................... B — p—
b=17 1 az17.9 a»17.9
‘Sellsharesondatet = b>178  as1806 | a>1806
| Sell shares on day | b>18.0 I as1802

Sell shares on da;ri

i

b>18.08 |

l

éus.él.l"s.hares on da.y t

Figure 3.5. Example of decision tree

The reason is that decision tree learning methods work only with only one
attribute value at a time by comparing this attribute value with a constant
(e.g., S(t)>17.8). Decision trees do not compare two attribute values of ac-
tual cases, forexample S(t+1)>S(t). Relational methods described in chap-
ter 4 specifically address this issue.

Dietterich (1997) discusses similar constraints of the decision tree
method. Different training samples will shift the locations of the staircase
approximation shown in figure 3.4. By generating different approximations
Fi(x), i=1,...,n, a better classifier can be constructed to the diagonal decision
boundary through combinations of these approximations. There are many
ways for combining approximations. One of them would be majority vot-
ing M(x):

LN, >N,
M(x)=40,N, >N, .
no value otherwise

where Ny is the number of approximations which classify x as a member of
class #1 (Fix)=1 i=1,...,n) and No is the number of approximations which
classify x as a member of class #0 (Fi(x)=0, i=l,...,n).

Dietterich [1997] noted that these improved staircase approximations are
equivalent to very complex decision trees. Those trees are too large to be
included in a practical hypothesis space H. The space would be far too large
for the available training data

The method of voting ensembles of decision trees is one the approaches
to resolve size and accuracy problems of traditional decision trees in finan-
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cial applications. On the other hand there are two current limitations of this

approach pointed out by Dietterich [1997]:

1. Voting ensembles can require large amounts of memory to store and
large amounts of computation to apply. For example, 200 decision trees
require 59 megabytes of storage, which makes them less practical than
other methods.

2. A second difficulty with voting ensemble classifiers is that a voting en-
semble provides little insight into how it makes its decisions. A single
decision tree can often be interpreted by human users, but an ensemble of
200 voted decision trees is much more difficult to understand.

Another alternative in finance is discovering sets of rules, i.e., rules in pro-

positional disjunctive normal form (section 3.2.3 and [Apte, Hong, 1996].

The third approach is discovering sets of first-order probabilistic rules in

financial time series (chapter 4 and [Kovalerchuk, Vityaev, 1998, 1999]).

3.1.3. Constructing decision trees

As we have seen in examples of decision trees above, the decision trees
are built by sequentially partitioning the input space. A splitting criterion
(test) is the core design element of a decision tree. A specific splitting test is
matched to each internal node. In addition, leafs (terminal nodes) show
predicted target values (classes). Thus three major decisions are made in
the process of designing a decision tree:

1. Selecting the root attribute (e.g., x1).

2. Selecting splitting criteria for the root and each of the internal nodes
(e.g., test=17.71 for x; can produce branch 1 with x1<17.71 and branch 2
with x,>17.71).

3. Selecting performance criterion, e.g., the ratio of right and wrong clas-
sified instances for training and test data.

The typical algorithm stores:

1. a subset of the training examples associated with the node, e.g., set of all

training instances such that x1<17.71 for branch 1.

2. a set of constraints, representing the splitting test, e.g., 5<x1<10, here 5

and 10 are constraints.

A typical decision tree algorithm uses this information for tuning splitting

tests. The goal is to improve the value of a performance criterion. There are

two types of splitting tests:

1. Single attribute splitting test, used in C4.S algorithms [Quinlan, 1993].

2. Multiple-attribute splitting test, used in an enhanced version of

ID2-0f-3 and Trepan algorithms [Murphy, Pazzani, 1991; Graven, Shav-

lik, 1997].
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Figure 3.5 illustrates the idea of single-attribute splitting tests like x;s17.71.
Another example of a single-attribute test is 5<x;<10. The multiple-attribute
splitting test in ID2-0f-3 uses m-of-n expressions for tests at its internal
nodes. The multiple-attribute splitting test can discover rules such

Rule MFR:

IF ( xi=1 & X2=1) OR (X3=1 & X4=1) OR ( x=1 & X3=1) OR
(xi=1 & x=1) OR ( x5=1 & x3=1) OR (x,=1 & x4=1)
THEN T=1.

This rule is a 2-of-4 type rule, ie., the rule is true if any two of four attrib-
utes are true.

Each m-of-n tree can be viewed as a set of ordinary trees connected with
OR. For example, rule MFR can be written as three rules MFR1, MFR2 and
MFR3 connected with OR:

Rule MFR1:

IF (x;=1 & x,=1) OR (x;=1 & x;=1) OR (x,=1 & x4=1)
THEN T=1.

Rule MFR2:

IF OR (x5=1 & x4=1) OR (x,=1 & x3=1) OR (x=1 & x3=1)
THEN T=1.

Rule MFR3

IF (x5=1 & x.=1) OR (x5=1 & x¢=1)
THEN T=1.

Rule MFR1 can be presented as an ordinary tree with root x, and branches
going to x,, X3 and x4. Similarly, rule MFR2 has root x3 and rule MFR3 has
o0t X4.

In section 3.1.2, we discussed rule R1:

IF (x;=1 & x,=1) OR (x;=1 & x,=1) THEN T=1.

This rule is true if any of two specific pairs of attributes are true. A compact
2-of-m rule type does not cover this rule. We will call this type of rule 2s-of-
m in order to distinguish it from non-specific 2-of-m rules. Another lan-
guage that is more general is needed for the compact presentation of these
and many other rules. This form in discussed in Section 3.2.3.
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It is important to mention that m-of-n rules follow a form similar to ex-
tracting rules from neural networks. In essence, activation functions for
nodes of a neural network work as m-of-n nodes in decision trees. The
advantage of using m-of-n tests is that they often result in trees that are more
concise. Originally, Murphy and Pazzani [1991] introduced the idea of using
m-of-n expressions as splitting tests in decision trees. Methods such as Tre-
pan extract a decision tree from a trained neural network by identifying m
and n. C4.S, ID2-of-3, and Trepan algorithms use a heuristic search process
to construct their splitting tests.

Evaluating decision tree criteria. Two criteria are critical for evaluat-
ing the learned decision trees:

1. Predictive accuracy and
2. Comprehensibility.

Usually accuracy is measured using the examples in the test set as the
percentage of test set examples that are correctly classified. There is no di-
rect measure of the comprehensibility of a decision tree. Therefore, different
indirect measures are used to represent comprehensibility of trees such as:

— the number of internal (i.e., non-leaf) nodes in the tree, and

— the number of attribute references used in the splitting tests of the tree.
The test is called a single-attribute test if only one value of the attribute is
involved, for instance, S(t)>17. A single attribute test is counted as one at-
tribute reference for computing the complexity of the tree. An m-of-n test is
counted as n attribute references, because it lists n attribute values [Graven,
Shavlik, 1997]. Table 3.2 shows how quickly the number of nodes of the
tree grows for 2s-of-m rules. It is very difficult to observe and comprehend a
tree with 100 or more nodes even if smaller parts of the tree are understand-
able. Table 3.2 shows that a set of separate trees for rules like R1 based on
20 pairs of attributes requires 100 nodes. In contrast, a single tree with only
five pairs of attributes requires even more nodes (125 nodes). Therefore, by
measuring the comprehensibility of a tree by its complexity, we may con-
clude that a rule with only 10 attributes (5 pairs) is not comprehensible.
This example shows that complexity can be the wrong measure of the
comprehensibility of a rule.

Use of individual attribute distribution. A distribution of values of an
individual attribute in training data can be used to set up the splitting test.
For example, the distribution could show that most of the instances with
x1517.71 belong to the class 1(“buy”) and the most of the instances with
x1>17.71 belong to class 2 (“sell”). However, there is a trap in this ap-
proach--such a distribution does not take into account dependencies among
attributes. This approach can extract rules, which do not reflect the essential
attribute dependencies. Table 3.3 and Figures 3.4 and 3.5 represent this case.
There are some possibilities to capture conditional dependencies, and thus to
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construct a more accurate model of the true distribution. One of them is to
compute conditional probabilities for particular nodes. In some cases, they
may instead provide worse estimates because they are based on less data.
To handle this trade-off, several methods apply statistical tests to decide
whether to use the local conditional probability for a node [Graven, Shavlik,
1997].

Stopping Criteria. A typical algorithm tries many partitions to find a
better one. Often a new partition is the result of merging or splitting groups
in the current partition. The process stops when any merge or split does not
form a better partition according to local and/or global stopping criteria. A
local criterion uses characteristics of a single node and a global criterion
uses characteristics of the entire tree. For instance, the local criterion used
by Trepan [Graven, Shavlik, 1997] is based on the purity of the set of ex-
amples covered by a node. Purity controls the proportion between training
examples from different classes that reached the node. In addition, Trepan
employs two global stopping criteria:

— a limit on the size of the tree and

— a statistical significance test on a validation set.

The first global criterion is intended to control the comprehensibility of the
tree and the second one is intended to control accuracy of the tree.

3.14. Ensembles and Hybrid methods for decision trees

Many studies have shown advantages of ensembles of different decision
trees and hybrids of decision trees with other methods when compared to
individual decision tree design. In this section we compare an individual
decision tree constructed using the C4.5 algorithm [Quinlan, 1993] and dif-
ferent ensembles of decision trees. C4.5 algorithm is one of the most widely
used decision tree algorithms. C4.5 consists of the following steps:

1. Choosing the attribute to be a starting node (root) in the decision tree.

2. Generating various possible attribute-splitting tests at the node (e.g., cre-
ating branches x<17.7 and x217.7).

3. Ranking generated attribute tests using the Information Gain Ratio Crite-
rion (IGRC).

4. Choosing the attribute-value splitting test top-ranked according to IGRC.

5. Extending the decision tree with new nodes corresponding to the best
test.

6. Repeating steps 2-4 for each internal node of the decision tree.

The algorithm splits discrete valued attribute and real-valued attributes
differently. If attribute S has V discrete values then the data can be split into
V subsets. Each subset contains objects with one of V values. If any real
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number can be a value of attribute S then the data is split using some thresh-
old T into 2 subsets (S<T and S2T).

Ensembles. The first approach to create ensembles of decision trees is to
run a decision tree learning algorithm several times, each time with a differ-
ent subset of the training examples (subsamples). We already briefly dis-
cussed three subsampling methods in Section 2.8.1:

4. Random selection of subsets (bootstrap aggregation -- bagging),
5. Selection of disjoint subsets (cross-validated committees),
6. Selection of subsets according probability distribution.

Sometimes, methods which use random selections of subsets are called
bagged methods, e.g., bagged C4.5.

There are several versions of these methods, which are summarized be-
low in table 3.4 following to [Dietterich, 1997].

Table 3.4. Subsampling methods for the training set

Method name Subsampling mechanism Example of subsample
parameters

1. Bootstrap aggrega- Draw randomly s examples with About 60 % of the training

tion (bagging) replacement. set. Examples can appear

multiple times.
2. Selection of disjoint | Divide the training set into k dis- | k=10

subsets (cross vali- joint subsets. Construct k over-

dated committees, lapping training sets by dropping

k-fold cross valida- out a different one of these k sub-

tion) sets.

3. Boosting Draw s examples with replace- 60-70% of the training set
(AdaBoost) ment according the probability

distribution p/x).

For example, the AdaBoost boosting method uses different probability
distributions to better match an ensemble of classifiers with the most diffi-
cult training data. Below steps of this algorithm are presented [Feund, Scha-
pire, 1995,1996; Dietterich, 1997]:

Step 1. Compute a probability distribution p{x) over the training

examples Tr.

Step 2. Draw a training set A, 5 of size s according the probability

distribution py.

Step 3. Produce a decision tree (classifier h;) using the decision tree

learning algorithm.

Step 4. Compute the weighted error rate (Er) of classifier h, on the train

ing examples using pAx): Er=2; npAx)Er(x;), where Er(x;) is er
ror of classifier b for example x;.
Step 5. Adjust the probability distribution pf{x) on the training examples
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(examples with higher error rate Er(x;) obtain higher probability
values).

Step 6. Generate a new training subsample Ay of size k with replacement

according to the adjusted probability distribution p; and

repeat step beginning from step 3.
The final classifier, hg, is constructed by a weighted vote of the individual
classifiers, h;. Each classifier is weighted according to its accuracy for the
distribution p; that it was trained on.

Table 3.5, condensed from descriptions in [Dietterich, 1997], summarizes
performance of different decision tree methods in comparison with their en-
sembles. Most of these comparisons were done using the C4.S algorithm as
a benchmark method [Quintan, 1993] with one exception for the option
method [Buntine, 1990]. The option method produces decision trees where
an internal node may contain several alternative splits (each producing its
own sub-decision tree). Actually, an option tree is a set of voted conven-
tional sub-decision trees.

Table 3.5. Comparison of C4.5 decision trees and ensembles of decision trees.

Underlying bench- Ensemble Results

mark algorithm

C45 C4.5 with The ensemble outperformed the under-
AdaBoost. M1 lying algorithm. [Feund, Schapire, 1995,

1996]

C4.5 C4.5 with a The ensemble outperformed the under-
weighted training lying algorithm [Quinlan, 1996]
sample

C4.5 Bagged C4.5 The ensemble outperformed the under-

lying algorithm [Dietterich, 1997]

C4.5 with injected Bagged C4.5 The ensemble outperformed the under-

randomness lying algorithm [Dietterich, 1997]

Option tree Bagged C4.5 The results are comparable while the

ensemble produces a more understand-
able result [Kohavi, Kunz, 1997]

An alternative approach to creating ensembles of decision trees is to
change a tree already discovered by using transition probabilities to go
from one tree into another one. For instance, the Markov Chain Monte
Carlo MCMC) method [Dietterich, 1997] interchanges a parent and a
child node in the tree or replaces one node with another. Each tree is associ-
ate with some probability P(h;). Then these trees are combined by weighted
vote to produce a forecast. Probabilities P(hy) can be assigned using some
prior probabilities and training data in the Bayesian approach. The process
of generating decision trees and assigning probabilities as transition prob-
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abilities from one tree to another one is modeled as a Markov process. More
about general Markov processes can be found in [Hiller, Lieberman, 1995].

3.1.5. Discussion

A learning algorithm is unstable if its forecast is altered significantly by
a small change in training data. Many examples of such instabilities are
known for decision tree, neural network, and rule learning methods. The
linear regression, k nearest neighbor, and the linear discriminant methods
suffer less from these instabilities. Dietterich [1997] argues that voting en-
sembles of unstable decision trees learning methods are much more stable
than the underlying decision tree methods. In addition to better stability of
the forecast, Table 3.5 shows that such a forecast fits the real target values
better, producing less forecasting errors.

Why do individual decision trees often perform worse than the voting en-
sembles built on them? There are at least three reasons: insufficient training
data, difficult search problems, and inadequate hypotheses space [Dietterich,
1997]:

1. Insufficient training data. Usually several hypotheses are confirmed
on training data. It would be unwise to prefer one of them and reject others
with the same performance knowing that the data are insufficient for this
preference.

2. Search problems. It is computational challenge to find the smallest
possible decision trees or neural networks consistent with a training set.
Both problems are NP-hard [Hyafil, Rivest, 1976; Blum, Rivest, 1988].
Therefore, search heuristics became common for finding small decision
trees. Similarly, practical neural network algorithms search only locally op-
timal weights for the network. These heuristics have a chance to produce
better solutions (decision trees or neural networks) if they use slightly dif-
ferent data as done with ensembles of classifiers.

3. Inadequate hypothesis space. It is possible that an hypothesis space
H does not contain the actual function f, but several acceptable approxima-
tions to f. Weighted combinations of them can lead to an acceptable repre-
sentation of such f.

There are two potential problems with having an inadequate hypothesis
space. H may not contain a weighted combination of decision trees close to
f. Alternatively, such a combination can be too large to be practical. In both
cases ensembles do not help to find f. Therefore, a wider hypothesis space
and more expressive hypothesis language are needed. The DNF and first
order languages provide this option.
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The fight with insufficient training data is also not so straightforward --
add as many additional data as possible. It is common that the real shortage
is in so called “border” data -- data, which are representing the border be-
tween classes. For instance, in figure 3.4, the diagonal is the actual border
between two classes, but available training data are not sufficient to identify
the diagonal unambiguously. These data permit several significantly differ-
ent borderlines. Indeed, having thousands of training examples located far
away from the border does not permit the border to be identified with the
desired accuracy. In Figure 3.4, the simple linear discriminant function has
enough expressive power to solve this problem completely. Just a few points
on the border (“hold” state) or a few points really close to this border be-
tween classes “buy”, “sell”, are needed. Nevertheless, thousands of addi-
tional examples representing “buy” and “sell” situations far away from the
actual border are useless for identifying this border.

3.2. Decision tree and DNF learning in finance

3.2.1. Decision-tree methods in finance

Langley and Simon [1995] listed some typical financial systems, devel-
oped with decision tree methods:

— Making credit card decisions for card issuing companies through the
evaluation of credit card applications.

— Advice on share trading for security dealers in six European countries.

— Prediction of which overdue mortgages are likely to be paid.

— Monitoring excessive claims in health insurance from both clients and
providers for different medical treatments.

Graven and Shavlik [1997] used the decision tree algorithm Trepan in
predicting whether the currency exchange rate will go up or down on the
next day.

Let us illustrate the “borderline” problem from the previous section with
the loan making example found in [Michie, 1989; Langley and Simon,
1995]. A typical decision of loan companies is to accept or reject a loan ap-
plication using information about an applicant. The trained statistical deci-
sion making system at American Express, UK was able to process from 85-
90% of the applications. The remaining 10-15% “borderline” applications
were analyzed by a loan officer, who forecast whether these borderline ap-
plicants would default on their loans. These loan officers were at most 50%
accurate in such prediction.
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This example shows the need for special attention to “borderline” per-
formance for the complex tasks. The standard performance criterion de-
scribed in section 3.1.3 is the ratio of right and wrong classified instances
for training and test data. A more advanced criterion would give higher
weights to examples which are closer to the ‘borderline”. The decision tree
(figures 34 and 3.5) performs well under the standard criterion and fails
under the borderline criterion.

American Express, UK motivated by the borderline problem developed a
decision tree based on 1014 training cases and 18 attributes (such as age
and years with an employer). The tree contains around 20 nodes and 10 of
the original 20 attributes that made correct predictions on 70% of the bor-
derline applicants. In addition, the company has benefited from the ex-
planatory ability of the decision tree, because by using the tree and under-
lying rules the company could explain the reasons for decisions to appli-
cants. This exploratory project took less than a week to designing the tree,
but American Express UK was so impressed that they put the resulting
knowledge base into use without further development [Michie, 1989; Lan-
gley and Simon, 1995].

It is important to note that Michie et al. were able to construct a small
tree (around 20 nodes) having 10 original attributes. Note, just for compari-
son, that the complete binary decision tree for 10 binary attributes consists
of about 2000 nodes. That is, the discovered tree is a hundred times smaller
than the complete tree. Unfortunately, experience shows that the chance of
discovering small trees for complex problems is not high. The next section
demonstrates this for a complex financial time series like SPS00C.

3.2.2. Extracting decision tree and sets of rules for SPS00

In this section, we consider an example of forecasting the up-down
direction of SPS00C using its ten-year daily data (1985-1994) -- 2513
training examples. SP500C data for 1995-1998 are used for testing -- 938
testing examples. Each example is a (v, y) pair, where v represents a
SP500C ten-day history and y is its up/down indicator for the following day.
The y indicator is equal to 1 (class 1) if SPS00C goes down and y=2 (class
2)if SPS00C goes up.

The task is to study the possibility of discovering a small decision tree
capable forecasting the y value using v. More precisely, v represents a
vector (V1,V2,.-.,V10), Where each v; is the relative difference of SP500C for
the current date 1 with the SP500C for the previous trading day (i-1):

vi=(SP500(i)- SP500(i-1)) / SP500(i).
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These numbers are small. They were scaled using a linear transformation
(av;+b). Therefore, figures below show a discovered decision tree and rules
using a scaled vi.

A fragment of the extracted decision tree (the first 9 of 25 levels) is pre-
sented in Figure 3.6. This tree has 112 nodes, 37 leaves, and a maximum of
depth 25. It was extracted using the Sipina_W method [Zighed, 1992] and
software [http://www.epcad.fr/sipina/sipinaE.html],

% ¥ o . 1
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Figure 3.6. Fragment of decision tree for SP300 (first 9 levels from 25 levels)

Two essential notions are used in Figure 3.6: vertices and partitions. The
root (node 1.1) shows all 2513 training examples (1057 downs and 1456
ups) before partitioning. The first partition deals with attribute v,. This at-
tribute is split by vy= -146.5 producing node 2.1 with threshold v,<-146.5
and node 2.2 with threshold v12-146.5. Node 2.1 is relatively effective node
-- 76.2% of the examples in this node belong to “up” class for SP500C.

Node 2.2 needs further partitioning. In the process of this partitioning, an
effective node 7.9 on 7" level is produced (87.5% of examples in the node
are from the “up” class. That is, two examples are from the “down” class
and 14 examples are from the “up” class. Further partitioning is needed for
other nodes.

In total Sipina_W extracted 85 simplified propositional rules from the
decision tree: 36 rules for the first class and 49 rules for the second class.
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Propositional rules extracted from the decision tree were simplified using
the C4.5 algorithm along with finding the best pessimistic error rate on each
rule [Quinlan, 1993]. A total accuracy of 67.5% was reached on the training
data (see table 3.6) by 32 of the 85 rules. These 32 rules cover 105 examples
perrule on the average. Figure 3.7 shows their distribution.

Table 3.6. Performance of the decision tree on training data 1985-1994 (112 nodes, 37 leaves,
max depth 25.)

Forecast class 1 | Forecast class2 | Unclassi- Accuracy

(down) (up) fied rate
Actual class | (down) | 460 581 16 43.7%
Actual class 2 (up) 203 1237 16 84.9%
Total 663 1818 32 67.5%
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Figure 3.7. Number of examples covered by the rules with error rate better than 67.5%

There are only five completely correct rules (5.8%) out of the 85 rules
extracted from the decision tree. They cover 9+4+3+7+6=29 of the 2513
training examples (1.15%.) or about six training examples per rule (see table
3.7). We call these rules error-free rules.

With this ratio of error-free rules, it is not surprising that the decision
tree and its 85 rules failed to forecast the “down” direction of SP500 for the
testing data. The results are 58.1% for 1995-1996 and 52.8% for 1997-1998
(see tables 3.8 and 3.9). The average performance on all the test data (1995-
1998) for both “up” and “down” classes is 55.6% with a relatively high ac-
curacy for the “up” class (77.1% and 70.3%).
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Table 3.7. Error-free propositional rules extracted by C4.5 algorithm from a decision tree

Category Expression Cove- | Statistical
red signifi-
exam- cance
ples

IF part for 1. v1e[22.50,123.50) and v22-37.50 and 9 0.995

Class 1 v4<-80.00 and v92-91.50 and v10<-27.50

(down 2. v1e[22.50,123.50) and v22-37.50 4 0.901

stock direc- and v4e[-80.00, 4.50)

tion) and v7283.00 and v82-14.00 and v10<-27.50 3 0.824

3. vle[-107.50,22.50) and v2<-37.50 and
v32120.50 and 7 0.983

v7283.00 and v8e[-4.50,14.00)
4. v2<-37.50 and v3220.50 and v424.50 and

'v7283.00
IF part for 5. vl1e€[9.50,22.50) and v22-37.50 and 6 0.920
Class 2 v4€[-46.50,.4.50) and
(up stock v5<-73.50 and v7<83.00

direction)

Table 3.8. Performance of the decision tree on testing data 1995-1996 (112 nodes, 37 leaves,
max depth 25)

Forecast Forecast Unclassified Accuracy

class 1 (down) class 2 (up) rate
Actual class 1 (down) 28 126 5 18.2%
Actual class 2 (up) 74 249 9 77.1%
Total 102 375 14 58.1%

Table 3.9. Performance of the decision tree on testing data 1997-1998 (112 nodes, 37 leaves,
max depth 25)

Forecast Forecast Unclassified Accuracy

class 1 (down) class 2 (up) rate
Actual class | (down) 49 120 5 29.0%
Actual class 2 (up) 74 175 9 70.3%
Total 129 295 14 52.8%

Thus, only a small fraction of rules produced by the decision-tree method
is fully consistent with training data. Moreover, these rules do not form a
short decision tree. They actually come from very different parts of a large
extracted decision tree with 112 nodes, 37 leaves, and a depth of 25. The
first three error-free rules from table 3.9 can be combined into a short tree
beginning from v1, but rules 4 and 5 do not belong to that tree. Note that the
successful use of the decision tree method described in section 3.2.1 re-
quired only 20 nodes with 10 attributes.

This consideration illustrates our claim in section 3.1.2 that for many ap-
plications, the decision tree language is too restrictive.
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Recognition of this fact led to extending decision tree software systems
to more general rule extraction and to creating tools to combine rules ex-
tracted from different trees (e.g, Sipina_W [Zighed, 1992], C4.5 [Quinlan,
1993]). Extracting rules in disjunctive normal form (DNF) is an alternative
generic approach to this problem. We discuss DNF success in finance in the
next section.

3.23. Sets of decision trees and DNF learning in finance

Examples in sections 3.1.2, 3.1.3, and 3.2.2 in this chapter show that the
attempt to construct a single decision tree can produce very large tree (table
3.2) or/and inaccuracies. Different ways to overcome these problems have
been suggested. For example in [Heath et al, 1993] a randomized decision
tree induction algorithm was suggested. The algorithm generates different
decision trees every time it is run. Each tree represents a different artificial
expert (decision maker). These trees are combined using a majority-voting
scheme in order to overcome the small errors that occur in individual trees.
These methods are also called leaning voting ensembles or learning a com-
mittee of decision trees. A majority-voting scheme was defined in section
2.3 and further discussed in section 3.1.4.

There are two extreme cases with sets of decision trees:

— all trees are applicable for all data instances (complete overlapping case),
— each tree has its own area in the attribute space (non-overlapping case).
The majority-voting scheme is reasonable for the cases with significant
overlap. The major disadvantage of voting schemes is that they provide
interpretations that are less clear than individual rules [Dietterich, 1997].

Another approach is to generalize the concept of a decision tree. We
have already discussed one of the generalization methods — the m-of-n form
of a decision tree. They do not solve the problem completely. There are
many sets of rules, which cannot be represented by relatively small m-of-n
rules. Prepositional and first-order logic methods for discovering rules in
disjunctive normal form (DNF) have expressive power to address the size
limitation of decision trees in way that is much more general. We present
details about first-order logic methods in chapter 4.

Next we discuss results obtained at IBM Research in discovering DNF
rules for financial applications using the R-MINI method [Apte, Hong,
1996]. The rule is in disjunctive normal form when the IF-part is presented
as a set of AND clauses (statements) connected with ORs. For example: the
rule

IF (x;=1 & x,=1) OR (x3=1 & x4=1) THEN T=1
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consists of two AND clauses (x;=1 & x2=1), (xs=1 & x4=1) connected with
an OR. Several approaches have been suggested for generating DNF rules
from data [Michalski et al., 1986; Clark, Niblett, 1989; Weiss, Indurkhya,
1993]. Generating DNF also is called learning sets of rules [Mitchell,
1997]. These methods create one rule at a time. Then examples covered by
this rule are deleted from the training data, before repeating the construction
step. The process is continued to find the least complex rule (DNF) covering
the training set. The complexity of a DNF is measured by the total number
of AND clauses and total number of tests. In Apte and Hong [1996] 569
AND clauses and related rules were generated for SPS00 using 4901 train-
ing examples represented with 30 attributes each. Specifically, the task was
to generate minimal DNF rules. These numbers show, however, that even
with this purpose in mind, the actual number of rules is still large (one rule
for each 8.6 examples on the average).

This amount is close to the six training examples per error-free rule in
Section 3.2.2 for SP500. Apte and Hong do not present a distribution like
that given in Figure 3.7 about the number of examples actually covered by
each rule. They mentioned that rules were cut if they cover three or less ex-
amples. It was assumed that such rules “discover” the noise component of
the data.

The purpose of rule discovering in [Apte, Hong, 1996] was managing
equity investment portfolios. A portfolio management scheme based upon
these rules was constructed and compared with a simulated SP500 index
fund performance. The authors report that the simulated prediction-based
portfolio returns 54% per year in comparison with the SPS00 index return
of 22%. The following trading strategy was used:

— Sell all securities whose predicted excess return is less than -6%,
— Buy all securities whose predicted excess return is greater than 6%.
In both cases a 0.5% transaction fee is applied to every trade.

This strategy gives a specific treatment to borderline instances -- buy
all securities only if the predicted excess return is greater than 6%. In this
study, five-year data are used to simulate return. The method used by Apte
and Hong can be called a hybrid method, because to get the final decision
it is combined with other methods. It is important to note that in this study,
the rule-based method outperformed the benchmarks. Apte and Hong
optimistically concluded that capital market domains could be effectively
modeled by DNF classification rules induced from available historical data
for making gainful predictions about equity investments.
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3.3. Extracting decision trees from neural networks

3.3.1. Approach

The rule-based “‘symbolic” approach described in Sections 3.1 and 3.2
represents learned solutions in an understandable form. Therefore, end
users can examine the learned solutions independent of their understanding
of the underlying mathematical tools. This type of representation is difficult
to obtain for neural networks. Neural network representations are usually
incomprehensible to humans [Shavlik, 1994; Graven, Shavlik, 1997]. How-
ever, the pure rule-based approach ignores valuable findings produced by
neural networks. A hybrid approach extracts symbolic representations like
decision trees from a trained neural network and combines both discoveries
in comprehensible manner.

In this approach, a trained neural network is used as input for a rule dis-
covery algorithm. The algorithm produces as output an approximate, sym-
bolic representation of the concept represented by the trained network.
Over the last decade, several studies have been done in this area [Andrews et
al., 1995; Shavlik, 1994]. One of the studies was specifically devoted to a
financial application -- predicting the Dollar-Mark exchange rate using the
Trepan algorithm [Graven, Shavlik, 1997].

Two types of methods for extracting rules from the underlying neural
network are possible:

1. structure specific and
2. structure independent.

Structure independent methods have an obvious advantage - they can
use an arbitrary network as a black box (“expert”) for obtaining simulated
target values. Meanwhile, the structure specific methods may more effi-
ciently extract rules from a neural network by taking advantage of the par-
ticular structure.

The next classification of rule-extracting methods is based on the input
data types. Three types of inputs and outputs make a significant difference
for rule-extracting algorithms:

1. discrete valued inputs and outputs are used in classification trees;

2. continuous valued inputs and outputs are used in regression trees;

3. mixture of discrete- and continuous valued inputs and outputs are used
in mixed trees.

It is also important to note that decision trees can be extracted from:

— training data directly,
— atrained network, and
— both a trained network and training data.
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In the second and third cases, a neural network serves as an ‘‘oracle”,
which can produce target values for many thousands of artificial training
examples. If the “oracle” is well trained then these additional examples can
help significantly in designing a decision tree. This means that there is no
significant limitation on the amount of available (artificial) training data for
training a decision tree.

3.3.2. Trepan algorithm

The Trepan algorithm exemplifies extraction of a decision tree from a
trained neural network. The general logic of the Trepan algorithm is pre-
sented in figure 3.8. There are many similarities between the Trepan and
conventional decision tree algorithms, that is, learning directly from a train-
ing set (see for instance, CART [Breiman et al., 1984] and C4.5 [Quinlan,
1993]). The major difference is that the Trepan interacts with the trained
neural network along with the training set used. The neural network pro-
vides predicted target values for artificial training examples. It is not nec-
essary that these predicted target values are the same as actual target values,
especially if the network was trained using insufficient data.

Instance space
[

Extracted
Decision
Tree

S

Decision
tree
algorithm

output

Oracle
(Trained
Neural
Network)

<
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Instance
selector
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instances

Artificial
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_of real
instances)

Figure 3.8. Extraction of Decision Tree from Neural Network

However, the Trepan algorithm treats the network's forecast as “ground
truth”. The Trepan tree grows by selecting the best nodes first (best-first
search method, [Russel, Norvig, 1995]) according to the node evaluation
function f(N):

F(N)=reach(N)*(1-fidelity(N)),

where reach(N) is the estimated fraction of instances that reached the node
and fidelity(N) is a measure of closeness between the tree’s outputs and the
network’s outputs for real and generated examples. The splitting test in each
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node is tested against a threshold on the minimal number of examples at the
node. This threshold (called min_sample) controls the reliability of the tree.
Input examples for the algorithm are selected using the underlying distribu-
tion of training data.

Graven and Shavlik [1997] noted some difficulties in extracting rules
with high fidelity with respect to their target networks using Trepan. They
suggested two ways to address this problem:

— Use languages other than decision trees to represent the extracted mod-
els;

— Apply truth-preserving transformations for simplifying the extracted
decision trees.

Relational methods, which we discuss in chapter 4, offer this language--first

order language. In addition, the representative measurement theory pre-

sented in chapter 4 specifically addresses truth-preserving transformations

for continuous valued attributes.

34. Extracting decision trees from neural networks in fi-
nance

34.1. Predicting the Dollar-Mark exchange rate

In this section, we discuss predicting the daily Dollar-Mark exchange
rate using a decision tree extracted from an independently trained Neural
Network. According to Graven and Shavlik [1997] the decision tree pro-
duced from the training set without requests to the “oracle” (learned neural
network) is much less accurate and comprehensible than the tree extracted
by the Trepan algorithm. Formally, three evaluation parameters have been
used to evaluate the decision tree: complexity, predictive accuracy, and fi-
delity to the network. The fidelity parameter measures how close the fore-
cast of the decision tree is to the forecast by the underlying neural network.

Data. The data for the task consist of daily values of foreign exchange
rate between the U.S. Dollar and the German Mark from January 15, 1985
through January 27, 1994 [Weigend et al., 1996] where:

1. the test set consisted of the last 216 days
2. the validation set consisted of 535 days (every fourth day from the re-
maining data);
3. the training set consisted of the remaining 1607 days.
The neural network used was trained by Weigend et al [1996] independ-
ent of the decision tree constructed by Graven and Shavlik [1997]. The net-
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work is composed of 69 input units, a single hidden layer of 15 units, and 3

output units.

The input units represent two types of information:

— Information derived from the time series itself such as a relative strength
index, skewness, point and figure chart indicators, etc. (12 inputs).

— Fundamental information beyond the series itself such as indicators de-
pendent on exchange rates between different countries, interest rates,
stock indices, currency futures, etc. (57 inputs).

Three output units reflect a forecast of the exchange rate and two char-
acteristics representing turning points in the exchange rate, specifically:

— anormalized version of the return (the logarithm of the ratio of tomor-
row's price to today's price divided by the standard deviation computed
over the last 10 trading days),

— the number of days to the next turning point where the exchange rate will
reverse direction,

— thereturn between today and the next turning point.
This task was converted into the classification task of predicting whether the
current day's price is going up or down. The network was trained using the
technique of “cleaning” [Weigend et al., 1996]. The obtained cleaned net-
work contained connections to 15 of the real valued attributes and five of the
discrete valued attributes from original the 69 attributes. In computational
experiments, two sets of attributes were involved:

— the 20 attributes taken from the cleaned network and

— the entire set of 69 attributes.

The clearning method involves simultaneously cleaning the data and

learning the underlying structure of the data. Specifically, cleaning uses a

cost function that consists of two terms:

C = 0.5n(y-y?)*+0.5k(x-x*)?

The first term, 0.5m(y-y%)%, measures the cost of learning by weighting the
squared deviation between the network’s output y and the target value y*.
The second term, 0.5k(x-x*)?, measures the cost of cleaning by squaring the
deviation between the cleaned input x and the actual input x*. The parame-
ters m and k are the learning rate and the cleaning rate, respectively.

The cleaning technique assumes that both inputs and outputs are cor-
rupted by noise. Correcting the inputs and outputs can suppress the noise
level and help to find a simpler regularity by training a network. A simpler
regularity suffers less from over fitting the output, therefore the found regu-
larity can be more reliable for out-of-sample forecasting.

Algorithm specifics. Trepan uses a given validation test set to measure
the closeness of the decision tree output to the neural network output, this is
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called fidelity. Trepan generates the tree with the highest value of fidelity to
the target network. This is a fundamental property of the approach. If the
network does not catch the essence of the underlying financial process, the
same will happen with an extracted decision tree.

For the min_sample threshold (see Section 3.3.2), values of 1000, 5000,
and 10000 are tried. Let us remember that the training set consists only of
1607 days. There is a big difference in training the decision tree directly
from 1607 actual samples and training with 10000 artificial examples gen-
erated by the neural network.

34.2. Comparison of performance

Two methods for discovering decision trees directly from data were used
for comparison with Trepan; namely, C4.5 [Quinlan, 1993] and an enhanced
version of ID2-of-3 [Murphy & Pazzani, 1991; Graven, Shavlik, 1997]. In
addition to these methods, a naive prediction algorithm was run for com-
parison with Trepan. This algorithm simply reproduces the current up/down
direction as a forecast. Below we analyze experimental results reported by
Graven and Shavlik. These results are summarized in Table 3.10.

The cleaned network provides the most accurate predictions and the m-
of-n tree extracted from the neural network made similar predictions. The
naive rule and conventional decision trees produce the worst predictions.

In addition, Graven and Shavlik match Trepan’s output and the output
from the neural network. Trepan was able to reproduce the network’s
up/down output in about 80% of the cases, but only 60.6% of Trepan’s out-
puts match to real up/down behavior of the exchange rate. On the other
hand, methods extracting rules directly from data (C4.5, ID2-o0f-3+) did not
reach this level of accuracy.

Table 3.10. Comparison of methods [Graven, Shavlik, 1997]

Method Test-set accuracy (%)
Naive rule (IFup THEN up, IF down THEN down) 52.8
Extracting conventional decision tree from data (C4.5) 52.8
Extracting m-of-n decision tree (1D2-0f-3+) 59.3
Extracting m-of-n decision tree from neural network (Trepan) 60.6
Clearned neural network 61.6

Table 3.10 shows that the accuracy of the naive prediction, C4.5, and
ID2-of-3+ ranges from 52.8% to 59.3%. This performance is similar to the
average 55.6% for extracting a decision tree from data without use of a neu-
ral network obtained by Sipina_W for SP500 in Section 3.2.2.

It is important to note here that one can not expect that an extracted deci-
sion tree would outperform the underlying neural network significantly, be-
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cause Trepan is designed to mimic the behavior of the network. Table 3.10
confirms this statement.

Figure 3.9 shows the tree extracted by Trepan from the cleaned neural
network. This tree has one m-of-n test, and four ordinary splitting tests. Ta-
ble 3.11 [Graven, Shavlik, 1997] provides brief descriptions of the attributes
that are incorporated into the depicted tree. For example, v; and vg represent
different functions of the Mark-Dollar exchange rate. Each leaf in figure 3.9
predicts the up/down direction of the exchange rate.

5of {v,>1.07, v, <0.39,
v, =false, v, >0.17,
vy <0.17, vg <0.39,
v, <-1.02, vg >-1.38,
vy <-0.10, v,<0.16}

— T F—.
S ¥ s
vy <037
< Ny i

Figure 3.9. The Trepan tree [Graven, Shavlik, 1997]

The beginning node of the tree (the root) is an m-of-n node with m=5
and n=10. It means that any five of 10 properties (tests) listed in this node
such as vi>1.07, should be satisfied to get T (“true” output) and otherwise
this node leads to F output.

Table 3.11. The attributes incorporated into the Trepan tree
Notation  Description

\7 A comparison of the return on investment of investing Marks in the U.S. stock
market versus investing Marks in the French stock market.

V2 A measure of the Yen-Dollar exchange rate versus Yen futures.

\Z A comparison of the Mark-Dollar exchange rate to the German interest rate.

2 A measures of the Mark-Dollar exchange rate versus Mark futures.

Vs A measures of the Mark-Dollar exchange rate versus Mark futures.

Vg A measure of the Swiss Franc-Dollar exchange rate versus Swiss Franc fu-
tures.

Vs A function of the Mark-Dollar exchange rate.

Vg A function of Deutsche Mark futures.

Vg A function of the Mark-Dollar exchange rate.
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The trees extracted from the neural networks are considerably simpler
than trees extracted from data directly, although the latter trees were simpli-
fied. Based on these results, Graven and Shavlik concluded that the tree ex-
tracted from the neural network is more comprehensible than the trees
learned from data directly. Remember that these authors measure compre-
hensibility of the decision tree by the number of nodes.

However, the single root node in Figure 3.9, which is a compact 5-of-10
rule extracted from the neural network, is equivalent to the set of all combi-
nation 5 of 10 tests, i.e., 252 conventional rules. The conventional decision
tree equivalent to this set of rules will not be smaller than decision trees dis-
covered from data directly by C4.5 and ID2-of-3+ algorithms. For instance,
(4.5 produced 103 internal nodes [Graven, Shavlik, 1997].

Graven and Shavlik report that the first node (5-of-10 rule) in the tree is
able to mimic nearly 80% of the neural network’s behavior and successive
nodes added to the tree do not significantly improve this fidelity value. They
express concern that Trepan possibly fails to explain the underlying regular-
ity in the financial process discovered by the neural network. These obser-
vations raise the questions:

— Is this 5-of-10 rule really more comprehensible than the set of rules ex-
tracted from data directly?
— Does this 5-of-10 rule provide enough explanation of the underlying
regularity in the financial process discovered by the neural network?
Conventional decision trees and sets of rules have an obvious advantage in
comprehensibility. We think that this non-conventional 5-of-10 rule and
other similar m-of-n rules need to be further analyzed to extract more un-
derstandable, conventional IF-THEN rules. Alternatively, appropriate
rules can be selected from the already identified 256 conventional rules.

It was noted in [Graven, Shavlik, 1997] that Trepan discovered the over-
all behavior of the target in the regions that correspond to up or down trends.
However, it was not able to catch all target fluctuations in the regions with
small values of up and down. Apte and Hong (see Section 3.2.3) avoided
this problem by putting a threshold of 6% for up/down in their trading strat-
egy. Therefore, the trading strategy chosen can eliminate some problems of
matching the neural network and the decision tree.

From our viewpoint, these experiments show that to this point m-of-n
rule language has not helped uncover really comprehensible rules behind
regularities discovered by neural networks in finance. The language of m-of-
rules is better understandable than the language of neural networks, if m and
n are small. However, in the described experiments relatively large m=5 and
n=10 were found. Therefore, the search for an appropriate language should
continue. Meanwhile, these experiments show that a decision tree can be
extracted from neural networks in finance with a close approximation to
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the network. This can be valuable if the underlying neural network performs
well.

3.5. Probabilistic rules and knowledge-based stochastic
modeling

Learning methods can be classified into two groups:
— Data-based learning methods and
— Knowledge-based methods.

The data-based learning methods rely on training data as a major or
sole source for discovering regularities. Decision trees, neural networks and
other general-purpose learning methods belong to this class. Knowledge-
based methods rely on training data and prior knowledge in variety of
other forms, which is routinely ignored by the data-based methods. Ignoring
other forms of available knowledge is one of the reasons it is difficult to in-
terpret the internal structure of a classifier produced by the data-based
methods. It may not have any correspondence to the real-world process that
is generating the training data [Duetterich, 1997]. In this section we discuss
one of the knowledge-based approaches -- generative stochastic modeling
[Jensen, 1996, Castillo at al, 1997, Dietterich, 1997, D'Ambrosio, 1993, Jen-
sen et al, 1990] also known as causal modeling.

The original idea of the approach was to represent a causal mechanism
of generating the training data including the output. For example in physics,
it would be a mechanism describing the energy level of particles (output)
having as input (training data) the energy distribution of particles in prior
moments. Outside of physics, it is very hard to produce a meaningful causal
mechanism which actually generates training data. This is particularly true
for finance. Therefore, producing a generative causal mechanism is usually
replaced by a less representative generative mechanism without firm causal
relations between components, but with probabilistic dependencies. Tech-
nically, it means the development of a probabilistic network — a network of
nodes associated with conditional probability distributions between nodes.

This approach fits financial applications. Figure 3.10 shows an illustra-
tive example of this type of generative mechanism (process) for stock direc-
tion forecast. Many useful probabilistic relations can be discovered between
the blocks in this figure. In this example, the prior knowledge is a network
of blocks with transition probabilities between them. For instance, the prob-
ability of stock going up today if yesterday stock went down -- P(up/down)
for blocks F and G -- can be very useful for stock direction forecasting for
tomorrow (block H).
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Figure 3.10. A probabilistic network for stock forecast

An important attribute of this prior knowledge is that it can be used for
different targets. For instance, if tomorrow is Tuesday then the probabilis-
tic relations between blocks A, B and E can be used. Below in section six
we analyze the progress that has been achieved in implementing a knowl-
edge-based approach in finance using Markov processes.

Solving learning problems uses a stochastic knowledge-based approach
with four major steps [Dietterich, 1997]:

1. Designing the structure of the network,

2. Selecting the forms of the probability distributions,

3. Identifying parameters of the node probability distributions, and

4. Solving forecasting tasks using probabilistic inference with the stochastic
model.

Training data are used for identifying parameters of the node probability
distributions in step 3 after a user has accomplished steps 1 and 2. Finally,
the learned network performs step 4. The most intuitive and informal step is
designing the structure of the network. In finance, especially in stock market
forecasting, this is a serious problem [Weigend, Shi, 1997, 1998]. Relational
data mining methods discussed in Chapter 4 could be viewed as a generic
tool for discovering a graphical structure.

3.5.1. Probabilistic Networks and Probabilistic Rules

In this section, we continue to illustrate the stochastic knowledge-based
approach with the probabilistic network presented in figure 3.10. Eight vari-
ables (with their abbreviations from A to H) are depicted in this figure:

1. Stock direction last Friday (A),
2. Stock direction this Monday (B),
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Stock direction last week (C),
Stock direction in January (D),
Stock direction this Tuesday (E),
Stock direction yesterday (F),
Stock direction today (G),

Stock direction tomorrow (H).

00 O\ AW

The variables 1-7 are used to estimate the probability of H - that the stock
will go up tomorrow. The essence of the approach is to evaluate the joint
probability P(A,B,C,D,E,F,G,H) of all § variables as a function of a few
simpler probability distributions like

P(A)*P(B) *P(E|A,B)*P(C)*P(D)*P(F|C,D)*P(G|F)*P(H|E,G,F)
Each smaller distribution is associated with a node of the network and re-
lates the node with its predecessor.

Next, we need to represent each probability distribution using a small
number of values to make the problem tractable. For instance, we can dis-
cretize stock direction into the values {<-6%, -6 - 0%, 0 - 6%, >6%} or con-
siderjust {down, up}, coding them as 0 and 1.

Then Tables 3.12-3.14 could represent the probability distributions for
those nodes. Each of these probabilities should be learned to get a learned
probabilistic network.

Table 3.12. Two-dimensional up-down probability distribution table for node H

Stock direction Stock direction Probability of stock directions tomorrow
yesterday (F) today G) P(H|F,G)

Down Up
Down Up PII. p”
Up Up Py P2
Up Down P Py,
Down Down Py Py

Table 3.13. One-dimensional up-down probability distribution table for node F

Stock direction yesterday (F)

Probability of stock directions yesterday P(F)

Down
Up

P
P,

Table 3.14. One-dimensional up-down probability distribution table for node G

Stock direction today (G) Probability of stock directions today P(G)
Down P,
Up Py

Probabilistic information from table 3.12 has an equivalent representation
in the form of the set of propositional probabilistic rules:



Rule-Based and Hybrid Financial Data Mining 105

Rule PR1: _
IF F=“down” & G=*down” THEN H=“down”
with PROBABILITY P(H=“down”|[F="down”,G="down”)=P,

Rule PR2:
IF F=“down” & G=“down” THEN H=*up”
with PROBABILITY P(H="up”|F="down”,G="down”)=P,,

Rule PR3:
IF F=“up” & G=“down” THEN H=*up”
with PROBABILITY P(H=“down”|F="up”,G="down”)=P;,

Rule PR4:
IF F=“up” & G="down” THEN H="up”
with PROBABILITY P(H="up”,F=“up”,G="down”)=Ps,

These rules are prepositional because they do not include variables.

There are software systems, which support computations of probabilities
in probabilistic networks such as Microsoft Belief Network (MSBN), see
http://research.microsoft.com/msbn. The full set of probabilistic rules for F,
G and H consists of eight rules. Given a set of training examples, this learn-
ing problem is very easy to solve. Each probability can be computed directly
from the training data. For example, the cell P(F="down”) can be computed
as the number of cases in the sample that had a downward stock direction.
The value P(H=“down”|F="up”, G=*down”) is the fraction of training ex-
amples with a downward stock direction on date t, an upward stock direction
on date (t-1), and an upward stock direction on date (t-2) for each date t in
the training data. Formally, using a sample, we can only get the maximum
likelihood estimates of each of these probabilities. These estimates can be
far away from the actual probability if there are very few examples. One
practical approach is to interpolate probabilities for “adjacent” points using
the assumption of monotonicity. For example, we might require that P(H =
“down more than 6%”| F =“up less than 6%”, G="down more than 6%")
have a value similar to P(H = “down more than 6% F =“up less than 6%”,
down 6%”, G="down 6%").

The final step is predicting whether stock will go up for a new case. Often
technically this means that we need to find the conditional probability distri-
bution P(H|A,B,C.D,E,F,G) and to select the hypothesis H with the highest
conditional probability for given A B,CDEF and G.

This can be done in advance (off-line) before getting A,B,C,.D,E,F and G
values. However, it will take a lot of storage space. An alternative way is to
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get first A,B,C,D,E,F and G and then compute the only one row of the prob-
ability table (on-line computation). Several algorithms have been developed
for off-line and on-line computation [Jensen, Lauritzen, and Olesen, 1990,
D'Ambrosio, 1993; Diettrich, 1997].

3.5.2. The naive Bayes classifier

The “naive” Bayes classifier [Duda & Hart, 1973] exemplifies stochastic
modeling from another viewpoint -- it makes assumptions about the prob-
abilities. The major assumption is independence -- the attributes are gener-
ated independently according to theirdistributions P (xjly) for each example.

Then real-valued attributes are discretized into a small number of values
and the probability distributions are computed from the training data by us-
ing the fractions of examples in each class that take on a given attribute
value. See tables shown in Section 3.5.1. For classes “down” (class code 0)
and “up” (class code 1), the decision rule which classifies a new example
(x,y) as follows:

0,if P(y=0/x)>P(y=1/x)
class=<1,if P(y=1/x)> P(y =0/x)

no classification otherwise
By using Bayes' rule from probability theory,
P (y=0[x) = (P(x]y=0)P(y=0))/P(x)
P (y=1jx) = (P(xly=1)P(y=1)/P(x),
one can write probabilistic prepositional rules BO and B1:

Rule BO: IF x THEN y=0 with
PROBABILITY (P(x|y =0)* P(y=0))/P(x)

Rule B1: IF x THEN y=1 with
PROBABILITY (P(xly =1) *P(y=1))/P(x)

If input x is represented by several attributes x;, i.e., X=(X1,Xa,...,Xp) the Bay-
esian classification decision rule should classify an example into class 0 if
and only if
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[P(xily=0)*P(xaly=0)*... *P(xaly=0)P(y=0)] /[ P(xily =1) *P(xaly=1)*...
. *P(gly=1) *P(y=1)}>1.

In this form, the rule means that

IF (x},X2,...,Xn) THEN y=0 with
PROBABILITY P(x,|y=0) *P(xy|y=0) * ...*P(x,ly=0) *P(y=0),

IF (X1,X2,...,Xa) THEN y=1 with
PROBABILITY P(x;ly =1) *P(x;ly=1) *... P(x,ly=1) *P(y=1).

This leads to the final decision rule:

If the probability of rule BO is greater than the probability of rule B1 then
the forecast is 0 (“stock will go down”).

Several experiments have shown that the naive Bayes model performed
well in comparison with the popular decision tree algorithm C4.5 [Quinlan,
1993] on 28 benchmark tasks and was robust with respect to violations of
the independence of attributes [Domingos, Pazzani, 1996, Diettrich, 1997].

Stochastic Bayes models are also important for unsupervised learning,
where the goal is to classify examples without having a target value. This is
also called data clustering.

3.5.3. The mixture of experts

Below we consider another set of stochastic models: the Hierarchical
Mixture of Experts (HME) model, the Hidden Markov Model (HMM)
and the Dynamic Probabilistic Network (DPN).

The Hierarchical Mixture of Experts model assumes that several proc-
esses (“experts”) contribute to the final decision [Jordan & Jacobs, 1994].
For example, in financial applications, we might assume two underlying
processes: bull market and bear market as the generating the processes. The
particular trends “down-up-up”, “down-up-down” and “up-up-down” could
be viewed as a mixture of “bear” and “bull” trends with the generating proc-
esses “down-down” and “up-up”. Trends that are more complex may require
a more complex mixture.

The simplified version of the HME model, called a switching gated
model, works as follows [Dietterich, 1997]:

1. Generate a training example (x;y;), where x; is a set of attributes and y;
is the target value.
2. Choose an “expert”E; stochastically (depending on the value of x;,);
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3. Compute conditional probability P(ylx, E;), where E; is an expert;
4. Combine experts according to their probability distribution:

P (ylx) = Z; gi (x)pi(yIx),

where gi(x) is the output of the gating network for expert E;(weight as-
signed to the expert E;) and pi(y|x) is the conditional probability distribution
over the various output values y produced by the expert E;

5. Forecast y using the distribution of P(y|x).

Experts can also be organized hierarchically, such model is called a hi-
erarchical mixture model. An important limitation of this approach follows
from the complexity of the identification of P(y|x,E;). Practically P(y|x,E;)is
identified only under strong assumptions, which may not be relevant to a
particular forecasting problem.

3.54. The hidden Markov model

Each node in the Markov network can be in different states S and transi-
tion between states is governed by the Markovian law (property). This
property sets relations between probabilities of transition from one state to
another state:

The conditional probability of transitionfrom a state S in one node of the
network (a parent node, R) to another node (a child node, C) depends
only on the parent node and does not depend upon a “grandparent” like
node G,

P(S(C)IS(R),S(G)=P(S(C)IS(R)).

Below figure 3.11 shows a diagram modified from figure 3.10. This diagram
satisfy Markovian property because all links to “grandparent” nodes are de-

leted and all connections are made time sequential.

Each block in figure 3.11 has a single input and produces a single output.
For instance, block G is associated with: (1) F -- “stock direction yesterday”,

(2) its current state G - “stock direction today” and (3) H -- “stock direction
tomorrow”, with a probability distributions for all these transitions. The
stock direction tomorrow (H) can be viewed as an output for node G and
also as the next state after G. Such a process can be repeated daily by up-
dating the value of today’s state of the stock. This iterative process 1s called
a Markov process, where each state of the stock is associated with a set of
its outputs (next states) and transition probabilities to each output state.
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Stock direction A . Stock direction

: Stock direction in January (D)
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Figure 3.11. An illustrative probabilistic network for stock forecast

The problem of identifying (discovering) and explicitly describing states
of such a Markov probabilistic network is challenging in financial appli-
cations. If states are not presented explicitly, they are called hidden states.
For instance, the state of the market can be viewed as a hidden state, because
we can not measure today directly such market parameters as investor’s ex-
pectations and intentions. However, we are able to observe their conse-
quences such as changes in prices and trade volume. A Markov model,
which is able to operate with hidden states, is called a Hidden Markov
Model (HMM). In this model, each hidden state s(t) is associated with an
observable output (o(t), which is generated according to the conditional
output probability distribution P(o(t)|s(t)). Similarly to conventional
Markov model, HMM assumes that each state s(t) moves to the next state
s(t+1) according to the transition conditional probability distribution is
P(s(t+1)|s(t)). Beginning from some initial state s(1) HMM will generate
the sequences of observable outputs o(1),0(2)...,0(n). Such observable
sequences are considered as training examples and they can be of different
length n. The set of possible values of observable outputs is called an al-
phabet. Each individual value o; from the alphabet is called a letter and a
sequence of letters is called a word. Similarly, a sequence of words is called
a sentence. HMM are described in [Rabiner, 1989].

These terms came from the speech recognition [Rabiner, 1989; Dietterich,
1997], where the alphabet of letters consists of “frames” of the speech sig-
nal. Let W be the set of all words in the language. We are able to observe
them, but the states generating them are hidden. Each word from W is mod-
eled as a HMM.

There are two major steps in using HMM with given probability distribu-
tions P(o(t)|s(t)) and P(s(t+1)|s(t) to recognize a spoken word:
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— compute the likelihood that each of the word HMM's generated that
spoken word w,
— match the most likely word with the spoken word w.

Financial time series can be interpreted similarly. Actually, this idea has
been already applied in finance, see Section 3.6 and [Weigend, Shi, 1997,
1998]. To be able to follow these steps a HMM should be learned using a set
of training examples. Generating of training examples assumes that vari-
ables describing hidden states are identified first. Weigend and Shi
[1997,1998] used unsupervised learning (clustering) to identify these vari-
ables. The general logic of HMM is show in Figure 3.12.

Actual data Discovering
(stock time series) thidden states s; |
| S
Examples generated from actual data Causal structure
(strings of observables, o,,..., 0,, of states
associated with the sequences of hidden
states)

i |
Markovian law of transition between hidden states

in the form of probabilistic network
(network of probabilistic rules)

|

I Forecasted next observable for a a given example ‘

Figure 3.12. Hidden Markov Model diagram

The fitting networks with identified hidden variables is accomplished by
several algorithms under different assumptions about statistical distributions.
For instance, the Expectation-Maximization (EM) algorithm [Dempster at
al, 1976] assumes the exponential family of distributions (binomial, multi-
nomial, exponential, Poisson, and normal distributions, and many others)
[Dietterich, 1997]. The EM algorithm is also called the Baum-Welch or
Forward-Backward algorithm in HMM.

The EM algorithm consists of two steps E and M:

1. E-step -- adding to each training example statistics describing a se-
quence of states that probably generated the example.

2. M-step — re-evaluating the probability distributions using the result of E-
step.

For more detail see [Dempster at al, 1976; Weigend, Shi, 1998, Dietterich,
1997].
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[stvi] = [sTv2]—> [sTV3] * + «-[sTVn]
VRI || = [VR2 || —=>[VR3 || * * *={VRn

\ N '
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STV -- stock trade volume
VR -- volatility region (high, low)
SD -- stock direction

Figure 3.13. A simple dynamic probabilistic network for stock direction.

Dynamic probabilistic (stochastic) network. In the hidden Markov
model, the number of values for the state variable at each point in time can
become very large. Consequently, the number of parameters in the state
transition probability P(ss;.;) can become intractably large. One solution is
to represent the causal structure within each state by a model. For example,
the hidden state can be represented by two separate relatively independent
state variables: stock trade volume and volatility region (high, low). Figure
3.13 shows the resulting model. This type of models is reviewed in [Smyth
et at, 1997]. They are known as a dynamic probabilistic network [DPN,
Kanazawa et al, 1995], a dynamic belief network [DBN, Dean, Kanazawa,
1989], and a factorial HMM [Ghahramani, Jordan, 1996].

3.5.5. Uncertainty of the structure of stochastic models

In sections 3.5.2-3.5.4 we have discussed learning the parameters of a
stochastic network with a given structure. It was assumed that nodes are
known and their relations are established. However, there are many prob-
lems where these structural components are uncertain and should be learned
from available data.

In table 3.15 we summarize some representative structure learning algo-
rithms described in [Dietterich, 1977]. Other algorithms can be found in
[Verma, Pearl, 1990; Spiegelhalter at al, 1993; Spirtes at al, 1993].
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Table 3.15. Summary of algorithms for learning of the network structure

Chapter 3

Structure of the
network learned

Algorithm heuristics
and assumptions

Algorithm procedure

Reference

Directed tree.
Nodes --variables,
Edges -- mutual
information be-
tween nodes

Chooses a root node

arbitrarily

Polynomial algorithm starts
with a complete graph,
finds maximum weighted
spanning tree.

Chow, Liu,
1968

Directed tree

Starts with a naive

Bayes network

Algorithm called TAN is a
modification of the Chow
and Liu. Adds arcs to im-
prove the posterior probabil-
ity of the network

Friedman,
Goldszmidt
1996

Bayesian frame-
work

All variables are
independent, ob-
served in the training
data and are ordered

by the user.

Algorithm called K2 evalu-

ates the posterior probability
of adding each possible sin-
gle arc and makes the high-

est-ranking addition.

Cooper,
Herskovits,
1992

Bayesian frame-
work

Starts with a prior
probability distribu-
tion of a prior net-

work

Modification to the K2
to provide a good starting
point using the prior network

Heckerman
at al, 1995

This area is important for financial applications, but studies in this area
have just begun [Weigend, Shi, 1997, 1998; Kovalerchuk, Vityaev, 1998,
1999]. See also sections 3.6.2 and 5.8. More experience has been gained in
medical applications compared to what has been done in finance. In one of
the experiments with the TAN algorithm, relatively accurate classifications
with understandable arcs (directed network connections) were found. How-
ever, some of these arcs had wrong directions [Friedman and Goldszmidt,
1996, Dietterich, 1997]. From our viewpoint, this result clearly shows the
difference between learning understandable and interpretable structures.
The TAN algorithm produced an understandable, but not interpretable
structure. This raises an important and open question -- how to learn suc-
cessful, understandable and interpretable structures.

3.6. Knowledge-based stochastic modeling in finance

3.6.1. Markov chains in finance

Transition probabilities. Many well-known prediction methods used in
stock market studies can be presented in the form of knowledge-based sto-
chastic models. Below we show this for Markov chains. Two simple
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Markov chains are presented in [Hiller, Lieberman, 1995]. Chain 1 has four
states with conditional probabilities presented in table 3.16.

Table 3.16. Transition matrix for Markov chain 1

The stock increases today | The stock decreases today
The stock increased yesterday 0.7 0.3

The stock decreased yesterday 0.5 0.5

In particular, table 3.16 gives the rule:

IF the stock increased yesterday
THEN the stock will increase today with probability 0.7.

Chain 2 has more states and is presented in table 3.17. This chain has a
similar interpretation. For instance, table 3.17 gives the rule:

IF the stock increases today and decreased yesterday
THEN the stock will increase tomorrow with probability 0.6.

This rule is a combination of the bold cells in table 3.17 where the IF-part is
taken from the first column. Similarly, the bold cell on the first row is used
as the THEN-part of the rule. The probability 0.6 can be found in the inter-
section of the respective row and column.

Table 3.17. Transition matrix for Markov chain 2

The stock The stock in- The stock de- The stock
increases both | creases tomor- | creases tomor- | decreases
tomorrow and | row and de- row and in- both tomor-
today creases today creases today row and to-
day
The stock increa- 0.9 0 0.1 0

sed both today
and yesterday
The stock in- 0.6 0 0.4 0
creased today
and decreased
yesterday

The stock de- 0 0.5 0 0.5
creased today
and increased
yesterday
The stock de- 0 0.3 0 0.7
creased both
today and yes-
terday
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3.6.2. Hidden Markov models in finance

A model for predicting the daily probability distribution of SP500 re-
turns is developed in [Weigend, Shi, 1997, 1998]. The goal of predicting a
probability distribution is significantly different from the typical goal in fi-
nance -- predicting the next value of the time series. The probability distri-
bution delivers a wider picture of the possible future of the stock market.

The full probability density function predictions are composed by a
weighted superposition of the individual densities. These individual distri-
butions are obtained using the Hidden Markov Model (HMM) method.

The resulting individual distributions have the following interpretation
and scope:

— Distribution 1: Low volatility regions,
— Distribution 2: High volatility regions,
— Distribution 3: Collector of the ourliers.

These distributions are identified using SP500 training data. Borders be-
tween three regions are vague and distributions are mixed in the border ar-
eas. Moreover, this mixture may be changed dynamically. Parameters of the
dynamic mixture are also identified with training data. The training SP500
set contained data from 01.12.73 to 12.31.86 and the test set contained data
from 01.02.87 to 12.29.94.

Weigend and Shi [1997] report that on these data simulated profit and
Sharpe ratio are better for the Hidden Markov Model than for the bench-
marks (neural network, linear regression model and simple buy-and-hold
strategy) working without restoring a probability distribution.

Rule-based methodology for enhancing the HMM approach. This
methodology assumes that each forecast is based on generating IF-THEN
rules. Neural networks and many other learning techniques produce forecast
generators without IF-parts. This creates significant difficulties in apply-
ing these methods for non-homogeneous data (e.g., data with high and low
volatility areas) and blending them. A learned neural network is formally
applicable to any combination of input values.

A general probabilistic inference approach suggests that:

— aset of forecast generators with IF-parts is learned;

— aprobability distribution is associated with each individual generator and
— ablend of individual distributions for these generators is identified.

In HMM, forecast generators are called experts, in chapter 4, we call them
probabilistic laws. Probabilistic laws based on first-order logic developed

in the framework of this general probabilistic methodology are described in
Chapters 4-6.



Chapter 4
Relational Data Mining (RDM)

To "be"means to be related.
Alfred Korzybski: Science and Sanity, 1933

4.1. Introduction

Data Mining methods map objects onto target values by discovered
regularities in the data. These objects and mappings should be represented
formally in some formal language. The selection of a language and a method
for discovering regularities is a serious challenge. The uncertainty of prob-
lem description and method capability is among the most obvious difficul-
ties in the process of selection.

Historically, methods based on attribute-value languages (AVLs) have
been most popular in applications of learning algorithms. Neural networks
(Chapter 2) and decision trees (Chapter 3) are typical examples of methods
based on AVLs. They are relatively simple, efficient, and can handle noisy
data. However, these methods have serious limitations in how they repre-
sent knowledge.

The purpose of Inductive Logic Programming (ILP) is to overcome
these limitations. ILP learning systems naturally incorporate background
knowledge and relations between objects into the learning process. Table 4.1
summarizes the advantages and disadvantages of AVL-based methods and
first order logic ILP methods [Bratko, Muggleton, 1995]. First-order logic
concepts are described in section 4.5.3. Before that we present examples and
discuss these concepts informally. However, it may be useful for some read-
ers to read section 4.5.3 now. Bratko and Muggleton [1995] pointed out that
existing ILP systems are relatively inefficient and have rather limited facili-
ties for handling numerical data.
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Table 4.1. Comparison of AVL-based methods and first-order logic ILP methods

Method Advantages for the learning proc- | Disadvantages for the learning pro-
ess cess
Methods Simple, Limited form of background
based on efficient, and knowledge.
attribute- handle noisy data. Lack of relations in the concept
value lan- description language.
guages :
Inductive Appropriate learning time with a Inappropriate learning time with a
logic pro- large number of training exam- | large number of arguments in the
gramming ples. relations.
methods
Solid theoretical basis (first- Weak facilities for processing
order logic, logic programming). numerical data.
Flexible
Background knowledge,
problem representation, and
problem-specific constraints.
Understandable representation
of
background knowledge, and
relations between examples.

The purpose of Relational Data Mining (RDM) is to overcome these
limitations. We use this new term in parallel with the earlier term Inductive
Logic Programming (ILP) to emphasize the goal -- discovering relations.
The term ILP reflects the technique for discovering relations -- logic pro-
gramming. In particular, discovering relational regularities can be done
without logical inference. Therefore, we define Relational Data Mining as

Discovering hidden relations (general first-order logic relations) in nu-
merical and symbolic data_using background knowledge (domain the-

oryh

Briefly, the advantages of RDM in comparison with other methods are pre-
sented in Chapter 1 using dimensions as suggested by Dhar and Stein
[1997]. In some publications (e.g., [Mitchell, 1997]) background knowledge
is called domain knowledge (theory). In this chapter, we outline the tradi-
tional ILP approach and describe a hybrid relational and probabilistic
technique that handles numerical data efficiently [Kovalerchuk, Vityaev,
1998; Vityaev et al, 1995; Vityaev, Moskvitin, 1993; Vityaev E., 1983].
This technique is called MMDR (Machine Methods for Discovering
Regularities). In Chapter 5, the MMDR method is applied to predict
SP500C time series and to develop a trading strategy. This method outper-
formed several other strategies in simulated trading.
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ILP systems have a mechanism to represent background financial knowl-
edge in human-readable and understandable form. This is important for
investors. Obviously, understandable rules have advantages over a stock
market forecast without explanations.

If a learning system uses only a set of hypotheses (hypothesis space H)
and training examples (TR) to find a hypothesis (regularity h) from H con-
sistent with the training examples, then this learning system is called an in-
ductive learning system. Examples consistent with hypothesis h, obtained
by such a system, are called induced examples. If a learning system uses a
set of hypotheses H and training examples TR along with generalized
background knowledge B, then this system is called an analytical (or ex-
planation-based) learning system. Examples consistent with background
knowledge are said to be explained by that background knowledge. Thus, in
an ideal world, the target value can be inferred from background knowledge
for any training example.

However, in the real world, RDM should handle imperfect (noisy) data
and in particular imperfect numerical data. This is one of the active topics
of modern RDM research [e.g., Bratko, Muggleton, 1995; Kovalerchuk,
Vityaev, 1998; Vityaev et al., 1995]. In Section 4.8, we describe the MMDR
approach to address this problem.

The next open question for ILP is the computational complexity of ILP
methods as noted in Table 4.1. In this chapter, we describe a way to handle
this challenge using directed semantic inference. Connections between rela-
tional data mining and relational databases are also considered in this
chapter. There are similarities as well as significant differences in interpre-
tation of the term “relational” in these two techniques.

In practice, learning systems based on first-order representations have
been successfully applied to many problems in chemistry, physics, medicine
and other fields [Bratko et al., 1992, Muggleton et al., 1992 Muggleton,
1999; Bratko, 1993; Dzeroski et al., 1994; Kovalerchuk et al., 1997; Paz-
zani, 1997]. Financial applications can specifically benefit from the RDM’s
predicate logic descriptions and from the background facility in RDM.
Chapters 5 and 6 are devoted to these applications.

Dzeroski [1996], Bratko, Muggleton [1995], Muggleton [1999] and Paz-
zani [1997] listed some major successful applications of ILP. It was stated in
these publications that the results obtained with relational methods using
real industrial or environmental data are better than with any other known
approach, with or without machine learning. Such tasks as mesh design,
mutagenicity, and river water quality exemplifies successful applications. It
is especially important that domain specialists appreciate that the learned
regularities are understandable directly in domain terms.
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4.2. Examples

In this section, several examples illustrate the difference between rela-
tional and attribute-value languages used in Data Mining. In an attrib-
ute-value language, objects are described by tuples of attribute-value pairs,
where each attribute represents some characteristic of the object, e.g., share
price, volume, etc.

Neural networks and many other attribute-value learning systems have
been used in financial forecasting for years (see chapter 3). Alternative at-
tribute-value learning systems producing decision rules, such as decision
trees (see chapter 3) also have been successfully applied in finance.

There are two types of attribute-value methods. The first one is based on
numerical expressions and the second one is based on logical expressions
and operations.

Neural networks and autoregression methods (chapter 2) exemplify the
first type of methods based on numerical representation and DNF methods
(chapter 3) exemplify the second type based on logical expressions.

Example 1.
Table 4.2 illustrates an attribute-value object representation. The first two
lines represent some objects from a training data set. The last line represents
an object without a value for the target attribute. The target value needs to
be predicted for this object, i.e., stock price for the next day, 01.05.99. Each
attribute-value pair can also be written as a name of an attribute and its
value; for example, the first object can be written as follows:

<date, 01.02.99>;

<stock price on 01.02.99, $60.6>;

<volume of shares traded on 01.02.99, 1000000>;
<target--stock price on 01.03.99, $53.8>.

Table 4.2. Attribute-value object presentation

Attribute: date Attribute 1: Attribute 2: Attribute 3:
Stock price ondatet  Volume (number of  Target-- stock price

shares) traded on on date t+1
date t

Value: 01.02.99 Value: $60.6 Value: 1,000,000 $53.8

Value: 01.02.99 Value: $53.8 Value: 700,000 $54.6

Value: 01.03.99 Value: $ 54.6 Value: 800,000 $56.3

Value: 01.04.99 Value: $56.3 Value: 840,000

For instance, the following rule 1 can be extracted from table 4.2:
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IF stock price today is more than $60 and
trade volume today is greater than 900,000
THEN tomorrow stock will go down.

This rule can be written more formally:

IF StockPrice(t)>$60 AND StockTradeVolume(t)> 900,000
THEN Greater(StockPrice(t+1), StockPrice(t))

Rule 2 is also true for table 4.2:

IF stock price today is greater than stock price yesterday and
trade volume today is greater than yesterday
THEN tomorrow stock price will go up.

Rule 2 also can be written more formally:

IF Greater(StockPrice(t), StockPrice(t-1)) AND
Greater(StockTradeVolume(t),Stock TradeVolume(t-1))
THEN StockPrice(t+1)>StockPrice(t)

Note, actually rule 2 is true for table 4.2 because table 4.2 does not have ex-
amples contradicting this rule. However, table 4.2 has only one example
(t=01.03.99) confirming this rule. Obviously, table 4.2 is too small to derive
reliable rules. Table 4.2 and presented rules are used just for illustrating that
attribute-value methods can not discover rules 1 and 2 from table 4.2
directly. Both rules involve relations between two objects (records for two
trading days tand (t+1)):

StockPrice(t+1)>StockPrice(t)
Greater(StockTradeVolume(t),StockTradeVolume(t-1)).

Special preprocessing is needed to create additional attributes, such as.

1, StockPrice (t- 1) < StockPrice (t)

StockUp(t) =
oekUp) {0, StockPrice (t- 1) 2 StockPrice (t)

There is a logical equivalency between attribute StockUp(t) and relation
Greater(StockPrice(t), StockPrice(t-1)) used in rule 1:

StockUp(t) <Greater(StockPrice(t), StockPrice(t-1)).
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Similarly to be able to discover rule 2 with attribute-value methods we need
an additional attribute:

VolumeUp(t) <>Greater(StockTradeVolume(t),StockTradeVolume(t-1))
Let us try to add relations like
Greater(StockTradeVolume(t),Stock TradeVolume(t-i))

with 2, 3, ...1i days ahead to the set of attributes. In this case, we need to gen-
erate many attributes such as Volume;Up(t) similar to VolumeUp(t) used for
one day ahead. In this way, a very small task can become huge. In logic
terms attributes StockUp(t) and VolumeUp(t) are monadic (unary) predi-
cates (Boolean functions with only one argument). In other words, lan-
guages of attribute-value methods are languages of functions of one vari-
ables (e.g., StockPrice(t)) and monadic predicates (e.g., StockUp(t)).

Functions of one variable are called monadic (unary) functions. The
first order language formally described in section 4.4.3 differs from a propo-
sitional logic language mainly by the presence of variables. Therefore, a
language of monadic functions and predicates is a first order logic language,
but a very restricted language.

A language of monadic functions and predicates was not designed to rep-
resent relations that involve two, three or more objects. The domain (back-
ground) knowledge that can be used in the learning process of attribute-
value methods is of a very restricted form. Moreover, other relations from a
database cannot be used in the learning process if they are not incorporated
into a single attribute-value table [Dzeroski, 1996].

Example 2.

There is a lot of confusion about the difference between logical attribute-
value methods and relational methods. At first glance, they do the same
thing -- produce “IF-Then” rules and use logical expressions. Dzeroski
[1995] presented a fragment of a relational database for the potential cus-
tomers of an enterprise to illustrate the difference. Table 4.3 presents a
similar fragment of a relational database for corporate credit card holders.
We wish to discover patterns in this table useful for distinguishing potential
new cardholders from those who are not.

An attribute-value learning system may use Age, Sex and the Number of
supervised associates from table 4.3. In this way, the following two patterns
could be discovered with monadic functions Num_of_Supervised(Person)
and Potential-Cardholder(Person):
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Rule 1:
IF Num_of_Supervised(Person) 2100
THEN Corporate_Cardholder(Person)

Rule 2:

IF Sex(Person)=F AND Age(Person) > 38
THEN Corporate_Cardholder(Person)

Table 4.3. Database Relation “Potential-Corporate-Credit-Cardholder” (Attribute-value table)

Person Age Sex Number of supervised Corporate card-
associates holder
Diana Right 39 F 10 Yes
Carol Peterson 49 F 1000 Yes
Barbara Walker 24 F 20 No
Cindy Peck 47 F 20 Yes
Peter Cooper 35 M 100 Yes
Stephen Baker 54 M 200 Yes

Table 4.4. Database relation “Colleague-of” (Attribute-value table)

Person (CEO) Colleague (CFO)
Peter Cooper Diana Right
Stephen Baker Cindy Peck

Using a first-order language with a two-argument predicate
Colleague-of(person, colleague) the following pattern can found:

Rule 3:
IF Colleague-Of(Person, Colleague) AND

Corporate_Cardholder(Person)
THEN Corporate_Cardholder(Colleague).

The last rule is much more meaningful, than the first two formal rules. Rules
1 and 2 are discovered in an isolated file (table 4.3), but rule 3 is discovered
using two files simultaneously. Table 4.3 represents a single relation in re-
lational database terms. Table 4.4 represents another single relation. To find

regularity involving records from both tables we need to use more expres-
sive first-order language. Mathematically, first-order languages generate

such relations with two, three and more variables.

Example 3. This example is adapted from [Mitchell, 1997], where it is
noted that relational assertions can be conveniently expressed using first-
order representations, while they are very difficult to describe using propo-
sitional representations. Propositional representation requires expressing
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rules only using constants. Mitchell suggests considering well-known rule
learners such as AQ [Michalski, 1969] and CN2 [Clark, Niblet, 1989] as
generators of propositional rules. More generally, the decision tree
method is considered a propositional method [Mitchell, 1997, pp. 275, 279,
283]. Our opinion is that for many applications the decision tree method
should be viewed as a special type of first-order logic method, restricted
with monadic (unary) functions and predicates as we already have shown in
example 1. Below, we show this for Mitchell’s example. Let {(x,y)} be a
training set and Father(x,y) is the relation “x is the father of y”. For each
pair of individuals it is known if Father(x,y) is true. Similarly, we have
truth-values for “y is a female” (Female(y)) and “y is the daughter of x”
(Daughter(x,y)).

An algorithm using first-order representations could learn the follow-
ing general rule from these training data:

IF Father(x,y) & Female(y)) THEN Daughter(x,y),

where x and y are variables that can be bound to any person. To do the same
using a propositional rule learner, the data should be represented as shown
in table 4.5.

IF (Father ;=Bob) & (Name;=Bob) & (Female,=False)
THEN Daughter, ;=True.

Although it is correct, this rule is so specific that it will rarely, if ever, be
useful in classifying future pairs of people [Mitchell, 1977]. First-order logic
rules have an advantage in discovering relational assertions because they
capture relations directly, e.g., Father(x,y).

Table 4.5 allows us to discover a first-order logic rule with monadic
predicates:

IF (Father;(x)=Name;(x) & Female;=True) THEN Daughter,;(x)=True.

Each row in Table 4.5 is viewed as a variable x, which represents informa-
tion about two persons. Indexes 1 and 2 indicate these persons. This is not a
very economical or natural way to store data, but it allows one to discover a
rule that is more useful than the propositional rule shown above. Therefore,
we believe that attribute-based logical methods should not be reduced to
propositional rules. These methods have restricted expressive power, but
they are able to discover monadic first-order rules.
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Table 4.5. lllustrative data for rule discovery

Name, Fa- Mother, | Fe- Name, | Fa- Mother, | Fe- Daugh

ther, male, ther, male, | -ter),
Sharon | Bob Louise | True Bob Victor | Nora True True
Bob Victor | Nora False

First-order rules allow one to express naturally other more general hy-
potheses, not only the relation between pairs of attributes. In particular, in
Chapter 5 we consider relations between three attributes related to SPS00.
Moreover, these rules are able to capture Markov chain types of models,
which are used for financial time series forecasting.

4.3. Relational data mining paradigm

As we discussed in the previous section, attribute-value languages are
quite restrictive in inducing relations between different objects explicitly.
Therefore, richer languages were proposed to express relations between ob-
jects and to operate with objects more complex than a single tuple of attrib-
utes. Lists, sets, graphs and composite types exemplify complex objects.

These more expressive languages belong to the class of first order logic
languages (see for definitions section 4.4.3 and [Russell, Norvig, 1995; Dze-
roski, 1996; Mitchell, 1977]). These languages support variables, relations,
and complex expressions. As we already mentioned, relational data mining
is based on first-order logic.

ILP can discover regularities using several tables (relations) in a data-
base, such as Tables 4.3 and 4.4, but the propositional approach requires
creating a single table, called a universal relation (relation in the sense of
relational databases) [Dzeroski [1995]. The following fields form the uni-
versal relation in example 2 presented above:

Age, Sex, Num_of_Supervised, Corporate_cardholder

along with

Colleague_Age, Colleague_Sex, Colleague_Num_of_Supervised, and Col-
league_Corporate_cardholder.

Thus, features of a colleague are included in the list of features of a per-
son. Table 4.6 illustrates this combined (universal) relation. Table 4.6 is
larger than Tables 4.2 and 4.3 together. One of the reasons is that the first
and the last lines actually present the same information, just in reverse order.
The universal relation can be very large and, therefore, inconvenient and
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impractical [Dzeroski [1995]. First-order logic rules have an advantage in
discovering relational assertions because they capture relations directly.

Table 4.6. Combined (universal) database relation (Attribute-value table)

Diana 39 F 10 Y | Peter 35| M 100 Y
Right Cooper

Carol 49 F 1000 Y

Peterson

Barbara 24 F 20 No

Walker

Cindy 47 F 20 Y | Stephen 54 M 200 Y
Peck Baker

Stephen 54 |M 200 Y | Cindy 47 F 20 Y
Baker Peck

Peter 35 M 100 Y | Diana 39 F 10 Y
Cooper Right

The typical Inductive Logic Programming task is a classification task
[Dzeroski, 1996]] with background knowledge B expressed as:
— aset of predicate definitions and properties,
— positive examples E* for some class (pattern) and,
— negative examples E— for the same class (pattern).

Using this background knowledge an ILP system will construct a predicate
logic formula H such that:

All the examples in E* can be logically derivedfrom B and H, and no
negative example in E=can be logically derived from B and H. Formula
H expresses some regularity that existed in the background knowledge.
Thisformula could be discovered by ILP methods. ILP assumes a predi-
cate logic representation of B and H.

In the example above, records like Corporate_Cardholder(Diana
Right)=Yes form the set of positive examples for the pattern (class) “poten-
tial customer” and records like Corporate_Cardholder(Barbara Walker)=No
form the set of negative examples for this pattern. Usually background
knowledge B, formula H, and positive and negative examples E*and E— are
all written as programs in the Prolog programming language. Prolog was
designed to support rich logical expressions, relations, and inference. This
language differs significantly from common programming languages like
C++ and Java. A search for regularity H is organized using logical inference
implemented in Prolog. Convenience of logical inference in Prolog also has
a drawback. It may require a lot of memory and disk space for storing ex-
amples and background knowledge. Examples E and background knowledge
B can be represented in different ways, from very compact to very space
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consuming. Therefore, a search for regularity H can be complex and inef-
fective.

The application of ILP involves three steps:

— development of an effective representation of the examples
— development of relevant background knowledge, and
— use of a general purpose ILP system.

There is a practical need for generalizing the goal. Relational data min-
ing methods should be able to solve numerical and interval forecasting
tasks along with classification tasks such as presented above. This requires
modifying the concept of training examples E* and E= and modifying the
concept of deriving (inferring) training examples from background knowl-
edge and a predicate. Section 4.8 presents a relational algorithm, called
MMDR, which is able to solve numerical and interval forecasting tasks.
This algorithm operates with a set of training examples E. Each example is
amended with a target value like is done in Table 4.2, where attribute #3 is a
target attribute--stock price for the next day. This is a numerical value.
There is no need for MMDR to make this target discrete to get a classifica-
tion task. Therefore, more generally, a relational data mining (RDM)
mechanism is designed for forecasting tasks, including classification, inter-
val and numerical forecasting. Similar to the definition given for classifica-
tion tasks, for general RDM background knowledge B is expressed as:

— aset of predicate definitions,
- tra(iining examples E expanded with target values T (nominal or numeric),
an

— setof hypotheses {Gy} expressed in terms of predicate definitions.
Using this background knowledge a RDM system will construct a set of
predicate logic formulas {H;} such that:

The target forecast for all the examples in E can be logically derived
from B and the appropriate H;, i.e., from B and H;.

Example 4. Let us consider Rule 2 discovered from Table 4.2 (see Ex-
ample 1, Section 4.2).

IF Greater(StockPrice(t), StockPrice(t-1)) AND
Greater(StockTradeVolume(t),Stock TradeVolume(t-1))
THEN StockPrice(t+1)>StockPrice(t)

This rule represents logical formula Hj, and table 4.2 represents training ex-
amples E. These two sources allow us to derive the following logically for
date (t+1)=(01.04.99):

StockPrice(01.04.99)>54.6 (1)
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assuming that t=(01.03.99). This is consistent with actual Stock-
Price(01.04.99)=56.3 for date 01.03.99. Rule 1 from the same Example 1 in
Section 4.1.2 represents logical formula Hi, but this rule is not applicable to
t=(01.04.99). In addition, other rules can be discovered from Table 4.2. For
instance,

IF StockPrice(t)<$60 AND StockTradeVolume(t)< $90000
THEN Greater($60,StockPrice(t+1))

This rule allows us to infer

StockPrice(01.04.99)< 60 ()
Combining (1) and (2) we obtain

60>StockPrice(01.04.99)>54.6 3)

With more data we can narrow the interval (54.6, 60) for t=(01.04.99). A
similar logical inference mechanism can be applied for t=(01.04.99) to pro-
duce a forecast for (t+1)=(01.05.99).

The next generalization of relational data mining methods should handle
(1) classification, (2) interval and (3) numerical forecasting tasks with
noise. This is especially important in financial applications with numerical
data and a high level of noise.

Hybridizing the pure logical RDM with a probabilistic approach (“prob-
abilistic laws”) is a promising direction here. This is done by introducing
probabilities over logical formulas [Carnap, 1962; Fenstad, 1967; Vityaev E.
1983; Halpern, 1990, Vityaev, Moskvitin, 1993; Muggleton, 1994, Vityaev
et al, 1995; Kovalerchuk, Vityaev, 1998].

In contrast with the deterministic approach, in Hybrid Probabilistic
Relational Data Mining background knowledge B is expressed as:

— A set of predicate definitions,

- Treaining examples E expanded with target values (nominal or numeric),
an

— A set of probabilistic hypotheses {G,} expressed in terms of predicate
definitions.

Using this background knowledge a system constructs a set of predicate

logic formulas {H;i} such that:

Any example in E is derived from B and the appropriate H;
probabilistically, i.e., statistically significantly.
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Applying this approach to (3)
60>StockPrice(01.04.99)>54.6,

we may conclude that although this inequality is true and is derived from
table 4.2 it is not a statistically significant conclusion. It may be a property
of a training sample, which is too small. Therefore, it is risky to rely on sta-
tistically insignificant forecasting rules to derive this inequality.

The MMDR method (section 4.8) is one of the few Hybrid Probabilistic
Relational Data Mining methods developed [Muggleton, 1994, Vityaev et al,
1995; Kovalerchuk, Vityaev, 1998] and probably the only one which has
been applied to financial data.

44.  Challenges and obstacles in relational data mining

One of the major obstacles to more effective use of the ILP methods is
their limited facility for handling numerical data [Bratko Muggleton, 1995]
(see table 4.1).

There are two types of numerical data in data mining:

— Numerical attributes used to describe objects and discover patterns.
— The numerical target variable and

Traditionally ILP solves only classification tasks without direct opera-
tions on numerical data. The MMDR method (section 4.8) handles an inter-
val forecast of numeric variables with continuous values like prices along
with solving classification tasks. In addition, MMDR handles numerical
time series using the first-order logic technique, which is not typical for ILP
applications. Historically, ILP was a pure deterministic logic technique,
which originated in logic programming. There are well-known problems
with deterministic methods--handling data with a significant level of noise.
This is especially important for financial data, which typically have a very
high level of noise. The MMDR method addresses this issue by introducing
probabilistic first-order rules.

Statistical significance is another challenge for deterministic methods.
Statistically significant rules have an advantage in comparison with rules
tested only for their performance on training and test data [Mitchell, 1997].
Training and testing data can be too limited and/or not representative. If
rules rely only on them then there are more chances that these rules will not
deliver a correct forecast on other data. This is a hard problem for any data
mining method and especially for deterministic methods like ILP. We ad-
dress this problem in Section 4.8, developing rules tested on their statistical
significance. Intensive studies are being conducted for incorporating a prob-
abilistic mechanism into ILP [Muggleton, 1994].
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Knowledge Representation is an important and informal initial
step in relational data mining. In attribute-based methods, the attribute form
of data actually dictates the form of knowledge representation. Relational
data mining has many more options for knowledge representation. For ex-
ample, attribute-based stock market information such as stock prices, in-
dexes, and volume of trading should be transformed into the first-order logic
form. This knowledge includes much more than only values of attributes.
There are many ways to represent knowledge in the first order logic lan-
guage. One of them can skip important information; another one can hide
it. Therefore, data mining algorithms may work too long to “dig” relevant
information or even may produce inappropriate rules. Introducing data
types [Flash et al., 1998] and concepts of representative measurement
theory [Krantz et all, 1971, 1989, 1990, Narens, 1985; Pfanzagl, 1968] (see
section 4.9) into the knowledge representation process helps to address this
representation problem.

It is well known that the general problem of rule generating and testing
is NP-complete [Hyafil, Rivest, 1976]. Therefore, the discussion above is
closely related to the following questions. What determines the number of
rules? When do we stop generating rules? In Section 4.8.2, we discuss this
issue.

The number of hypotheses is another important parameter. It has al-
ready been mentioned that RDM with first-order rules allows one to express
naturally a large variety of general hypotheses, not only the relation between
pairs of attributes. These more general rules can be used for classification
problems as well as for an interval forecast of a continuous variable. RDM
algorithms face exponential growth in the number of combinations of predi-
cates to be tested. A mechanism to decrease this set of combinations is
needed. Section 4.9 addresses this issue using a higher-level language, a data
type system and the representative measurement theory approach. Type
systems and measurement theory approaches provide better ways to gener-
ate only meaningful hypotheses using syntactic information.

A probabilistic approach also naturally addresses knowledge discovery
in situations with incomplete or incorrect domain knowledge. Properties
of individual examples are not generalized beyond the limits of statistically
significant rules.

Predicate Development is needed for relational data mining. To utilize
advantages of human-readable forecasting rules produced in relational data
mining, logical relations (predicates) should be developed for financial
problems. These predicates should be interpretable in ordinary financial
terms like stock prices, interest rates, trading days, and so on. In this way,
relational methods produce valuable understandable rules in addition to the
forecast. A financial specialist can evaluate the performance of the fore-
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cast as well as a forecasting rule. The problem of inventing predicates is
addressed in Chapter 3.

4.5. Theory of RDM

4.5.1. Data types in relational data mining

A data type (type for short) in modern object-oriented programming (OOP)
languages is a rich data structure, <AJPJF>. It consists of elements
A={a,,a,,..8,}, relations between elements (predicates) P={P,,P,,...P,} and
meaningful operations with elements F={F,Fs,...,F¢}. Operations may include
two, three or more elements, e.g., ¢ = a# b, where # is an operation on elements
a and b producing element c. This definition of data type formalizes the concept
of a single-level data type. For instance, a single-level graph structure (“stock
price” data type) can be created with nodes reflecting individual stock prices
and edges reflecting relations between stock prices (<, =, >). These graph
structures (values of the data type) can be produced for each trading day --
StPr(1), StPr(2),..., StPr(t) -- generating a time series of graph structures. A
multilevel data type can be defined by considering each element a; from A as a
composite data structure (data type) instead of as an atom. To introduce a mul-
tilevel stock price data type, stocks are grouped into categories such as high-
tech, banking and so on. Then relations (<, =, >) between the average prices of
these groups are defined. Traditional attribute-value languages operate with
much simpler single-level data types.

Implicitly, each attribute in attribute-value languages reflects a type, which
can take a number of possible values. These values are elements of A. For in-
stance, attribute “date” has 365 (366) elements from 01.01.99 to 12.31.99.
There are several meaningful relations and operations with dates: <, =, >, and
middle(a,b). For instance, the operation middle(a,b) produces the middle date
¢=01.05.99 for inputs a=01.03.99 and b=01.07.99. It is common in attribute-
value languages that a data type such as a date is given as an implicit data type.
(see example 5). Usually in AVLs, relations P and operations F are not ex-
pressed explicitly. However, such data types can be embedded explicitly into
attribute-value languages.

Example 5. Let us consider data type “trading weekdays”, where a set of
elements A consists of {Mon, Tue, Wed, Thu, Fri}. We may code these days as
{1,2,34,5} and introduce a distance p(a,b)=Ja-b|between them using these nu-
meric codes. For instance,

p(Mon,Tue)=p(1,2)=|1-2|=1 and p(Fri,Mon)=p(5,1)=|5-1|=4.
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The last distance is natural if both Friday and Monday belong to the same
week, but if Monday belongs to the next week it would be more reasonable to
assign p(Fri,Mon)=1, because Monday is the next trading day after Friday. This
is a property of cyclical scales. Different properties of cyclical scales are stud-
ied in representative measurement theory [Krantz, et al. 1971, 1979, 1980]. The

“trading weekdays” data type is a cyclical data type. This distance has several
properties which are unusual for distances. For instance, it is possible that

P(a,b)=p(b,a),

Let us assume that weekday a always precedes weekday b. Under this assump-
tion p(Fri,Mon) means a distance between current Friday and Monday next
week, but p(Mon,Fri) means a distance between Mon and Fri during the same
week. In this example the requirement that a precedes b was not defined explic-
itly. In [Kovalerchuk, 1975, 1976] we studied cyclical scales and suggested nu-
meric and binary coding schemes preserving this property for a variety of cycli-
cal scales.

In AVLs each attribute is a type and any object is a sequence of values of
these attributes. This is the base for efficient data mining in simple data repre-
sented in an AVL. On the other hand, as Flach at al [1998] noted, the Prolog
language alleviates many of the limitations of attribute-value languages related
to data structure.

However, the traditional application of Prolog within ILP has also caused
the loss of one critical element inherent in attribute-value languages: the notion
of type. The Prolog language used in ILP has no type system. All characteris-
tics of objects are captured by predicates. Therefore, a number of ad hoc
mechanisms (e.g., linked clauses, mode declarations, determinacy, etc) are used
to constrain a search.

A new strongly typed programming language Escher was developed to
meet this challenge [Flach et al, 1998]. The Escher language is an important
tool, which allows users to incorporate a variety of explicit data types developed
in representative measurement theory into the programming environment. On
the other hand, RDM can be successfully implemented using common lan-
guages like Pascal and C ++ [Vityaev, Moskvitin, 1993; Vityaev et al, 1995].

4.5.2. Relational representation of examples.

Relational representation of examples is the key to relational data min-
ing. If examples are already given in relational form, relational methods can
be applied directly. For attribute-based examples, this is not the case. We
need to express attribute-based examples and their data types in relational
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form. There are two major ways to express attribute-based examples using

predicates:
— generate predicates for each value and

— use projection functions.
Table 4.7 presents an attribute-based data example for a stock.

Table 4.7. Attribute-based data example
Stock price, $ Volume, x1000 | Date Weekday Stock Event
54.6 3067.54 01.04.99 Monday New product

Generating predicates for each value. To express stock price $54.60
from Table 4.7 in predicate form, we may generate predicate P546(x), such
that P546(x)=true if and only if the stock price is equal to $54.60. In this
way, we would be forced to generate about 1000 predicates if prices are ex-
pressed from $1 to $100 with a $0.10 step. In this case, the ILP problem will
be intractable. Moreover, the stock price data type has not yet been pre-
sented with the P546(x) predicate. Therefore, additional relations to express
this data type should be introduced. For example, it can be a relation be-
tween predicates P546(x) and P478(x), expressing a property that stock
price 54.6 is greater than 47.8.

To avoid this problem and to constrain the hypothesis language for
RDM, the projection function was introduced [Flach et al, 1998]. This con-
cept is described below.

Representation of background knowledge. ILP systems use two sorts
of background knowledge: objects and relations between those objects. For
example, objects are named by constants a,b,c and relations are expressed
using these names -- P(a,b)=true and P(c,b)=false. Use of constants is not
very helpful because normally names do not carry properties of objects use-
ful for faster data mining. In the approach suggested in [Flach et al, 1998],
this is avoided. An object is “named” by the collection of all of its charac-
teristics (terms).

For instance, term representation of stock information on 01.03.1999
can be written as follows:

StockDate(w)=01.03.1999

& StockPrice(w)=$54.60

& StockVolume(w)=3,067,540
& StockWeekday(w)=Mon

& StockEvent(w)="new product”.

Here StockPrice is a projection function which outputs stock price
(value of StockPrice attribute).
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Only naming of subterms is needed. This representation of objects (ex-
amples) is convenient for adding new information about an object (e.g., data
types) and localizing information. For instance, subterm “StockEvent” per-
mits one to localize such entities as reported profit, new products, competi-
tor activity, and government activity.

In the example above the following data types are used:

- type qukday = {Mon, Tue, Wed, Thu, Fri},

— type price,

— type volume,

— type date,

— type event = {reported profit, new product, competitor’s activity, gov-
ernment activity, ...},

— type stock = {price, volume, date, weekday, event}.

Type event brings a description of event related to the stock, e.g., published

three month profit, new product, competitor’s activity. This can be as a sim-

ple text file as a structured data type.

The representation of an example then becomes the term

Stock (54.6, 3067.54, 01.04.99, Mon, new product).

Notice that when using projection functions in addition to predicates it is
possible, without the use of variables, to represent relational information
such as the equality of the values of two attributes. E.g., projection function
StockEvent together with the equality relation (=) are equivalent to predicate
SameEvent(w,x):

SameEvent(w,x)® StockEvent(x)=StockEvent(w).

Thus, the distinction between different propositional and first-order learning
tasks depends in part on the representation formalism.

Strongly typed languages. ILP systems use types to provide labels at-
tached to logical variables. However, these are not the data type systems
found in modern programming languages. All available literals in the
Prolog language will be considered for inclusion if a naive refinement op-
erator 1S used for Prolog [Flash et al, 1998]. These authors developed a new
strongly typed ILP language, Escher, which employs a complex data type
system and restricts the set of hypotheses by ruling out many useless hy-
potheses. The MMDR method (Section 4.8) employs another way to incor-
porate data types into data mining by adding a data type structure (relational
system) into the background knowledge. Such a relational system is based
on representative measurement theory (Section 4.10).
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Complex data types and selector functions. Each data type is associ-

ated with a relational system, which includes:

— cardinality,

— permissible operations with data type elements, and

— permissible relations between data type elements.

In turn, each data type element may consist of its own subelements with
their types. Selector functions [Flash et al, 1998] serve for extracting sub-
terms from terms. Without selector functions, the internal structure of the
type could not be accessed. Projection for selecting the i-th attribute requires
the tuple type and a list of components (attributes) of the tuple. A list of
components (attributes) requires the length ofthe list and the set of types of
components.

The number of hypotheses. The most important feature of strongly
typed languages is that they not only restrict possible values of variables, but
more importantly constrain the hypothesis language.

Table 4.8 summarizes information about data type features supported by
different languages: ordinary attribute-based languages, attribute-based lan-
guages with types, first-order logic languages with types and ILP languages
based on Prolog. This table is based on analysis from [Flach et al, 1998],

Table 4.8. Data types supported by data mining languages
Supported features of object | Attribute- Attribute- First-order | ILP based

representation based lan- based language on Prolog

guage Language with types language
with types

Formally expressed data type No Yes Yes Yes

context

Attribute-value tuples Yes Yes Yes No

Explicitly induced relations No Yes Yes Yes

between tuples

Data types of attributes ex- No Yes Yes No

pressed as in modern object-
oriented programming lan-
guages

Mechanism to restrict the No Yes Yes No
set of possible hypotheses
using data types
Representing objects by No Yes Yes No
terms using projection func-
tion

Strongly typed languages for numerical data are especially important for
financial applications with prevailing numeric data.
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Single Argument Constraints. Consider an example, the term
stock(A,B,C,.D,E) has a type definition of

stock(price, volume, date, weekday, event).
Having this type definition, testing rules with arguments like
(25.7, 90000, 01.04.99, 67.3, new product)

is avoided because 67.3 does not belong to weekday type. Thus, this typing
information is a useful simple form of background knowledge. Algorithms
FOCL (Section 4.6.3) and MMDR (Section 4.8) take advantage of typing
information. On the other hand, the well-known FOIL algorithm (Section
4.6.2) does not use type constraints to eliminate literals from consideration.
Typing can be combined with localized predicates to reduce the search
space. For instance, a localized relation Greater_dates(A,B) can be intro-
duced to compare only dates with type information Greater_dates(date,date)
instead of a universal relation Greater(item, item). Similarly, a localized re-
lation Greater_$(A,B), type information Greater_$(price, price) can be in-
troduced and applied for prices. This localized typing avoids the testing of
some arguments (literals). For instance the localized predicate
Greater_dates(A, B) should not be tested for literals of types such as

Greater_dates(stockprice, stockprice),
Greater_dates(stockprice, date),
Greater_dates(date, stockprice)

More generally, let {Ti} be the types of already used variables {x;} in predi-
cate P. Predicate P should be tested for different sequences of arguments. If
the type Ti of the already used i-th argument of P contradicts the type of an
argument y; suggested for testing P, then the testing of the sequence which
involves y; can be eliminated. This is a correct procedure only if a predicate
is completely localized, i.e., only one type of argument is allowed for y;. It
is the case for the predicate Greater_dates, but it is not for the original predi-
cate Greater defined for any items. This consideration shows that typing in-
formation improves background knowledge in two ways: (1) adding
predicates and clauses about data types themselves and (2) refining and
adding predicates and clauses about objects (examples). In such situations,
typing can in the best case exponentially reduce the search space [Flach et
al, 1998]. FOCL and FOIL algorithms (Section 4.6) illustrate the benefit of
typing. FOCL algorithm tested 3240 units and 242,982 tuples using typing
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as compared to 10,366 units and 820,030 tuples without typing. The task

contained [Pazzani, Kibler, 1992]:

— learning a predicate with six variables of different types and

— 641 randomly selected training examples (233 positive and 408 negative
training examples).

Typing is very useful for data mining tasks with limited training data,
because it can improve the accuracy of the hypothesis produced without
enlarging the data set. However, this effect of typing is reduced as the
number of examples increases [Flash et al, 1998; Pazzani, Kibler, 1992].

Existential variables. Consider the hypothesis:

IF (there exists stock w such that StockEvent(x)=StockEvent(w))
AND (Some other statement)
THEN StockPrice(x)>StockPrice(w).

and

IF (3w, z StockEvent(x)=StockEvent(w)=StockEvent(z))
THEN StockPriceP(x)>StockPriceP(z).

The variables w and z are called existential variables. The number of exis-
tential variables like w and z provides one of the measurements of the
complexity of the learning task. Usually the search for regularities with
existential variables is a computational challenge.

4.5.3. First-order logic and rules

This chapter defines basic concepts of first order logic such as: predi-
cates, functional expressions, terms, atoms, and quantifiers. More details and
advanced issues are covered in [Russel and Norvig, 1995; Mitchell, 1997;
Halpern, 1990; Krantz, Luce, Suppes and Tversky, 1971, 1989, 1990].

A predicate is defined as a binary function or a subset of a set

=DyxD;x...xD,, where D; can be a set of stock prices at moment t=1 and
D, can be stock price at moment t=2 and so on. Predicates can be defined
extensionally, as a list of tuples for which the predicate is true, or inten-
sionally, as a set of (Horn) clauses for computing whether the predicate is
true. Let stock(t) be a stock price at t, and consider the predicate

UpDown(stock(t), stock(t+1), stock(t+2)),

which is true if stock goes up from date t to date t+1and goes down from
date t+1 to date t+2. This predicate is presented extensionally in Table 4.9
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Table 4.9. UpDown predicate

Stock(t) Stock(t+1) Stock(t+2) Updown(,, )
$34 $38 $35 True
$38 $35 $35.50 False
$35.50 $36 $34 True
$36 $37 $38 False

and intensionally using two other predicates Up and Down:

Up(stock(t),stock(t+1))&Down(stock(t+1),stock(t+2))
— UpDown(stock(t),stock(t+1),stock(t+2).

where Up(stock(t),stock(t+1))<> Stock(t+1)2Stock(t), and
Down(stock(t),stock(t+1)) <> Stock(t) =Stock(t+1).
Predicates Up and Down are given extensionally in Table 4.10.

Table 4.10. Predicates Up and Down

Stock(t) Stock(t+1) Up(, ) Down(, )
$34 $38 True False
$38 $35.50 False True
$35.50 $36 True False
$36 $37 False True

A literal is a predicate A or its negation (—A). The last one is called a
negative literal. An unnegated predicate is called a positive literal. A
clause body is a conjunction A1&A,&...&A, of literals A),A,,...,A. Oftenwe
will omit & operator and write A;&Aq&...&A, as AjA,...A,.

A Horn clause consists of two components: a clause head (Ag) and a
clause body (A1Az...A;...Ay). A clause head, Ay, is defined as a single predi-
cate. A Horn clause is written in two equivalent forms:

A« AA .. AiLA, Oor AjA;... Ai...AL —>A,,

where each A, is a literal. The second form is traditional for mathematical
logic and the first form is more common in applications.

A collection of Horn clauses with the same head Ay is called a rule.The
collection can consist of a single Horn clause; therefore, a single Horn
clause is also called a rule. Mathematically the term collection is equivalent
to the OR operator (v), therefore the rule with two bodies AjA,...A;and
BB;...B; can be written as

Ao« (AJA,...Av BB:..B)
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A k-tuple, a functional expression, and a term are the next concepts
used in relational approach. A finite sequence of k constants, denoted by
<ay,...,a¢> 1s called a k-tuple of constants. A function applied to k-tuples is
called a functional expression. A term is
— aconstant,

— functional expression.
— variable or
Examples of terms are given in table 4.11.

Table 4.11. Examples of terms

Expression Comment Term

?
X Variable --stock x Yes
MSFT Constant (specific stock/index) Yes
StockPrice(x) Functional expression Yes
TradeVolume(x) Functional expression Yes
StockPrice(x)*TradeVolume(x) Functional expression Yes
Nasdaq(x)>StockPrice(x) Incorrect No
NASDAQ(x) Predicate, literal (Stock x is traded on No

NASDAQ)

StockPrice(x)>StockPrice(y) Predicate(x,y), literal No

A k-tuple of terms can be constructed as a sequence of k terms. These
concepts are used to define the concept of atom. An atom is a predicate
symbol applied to a k-tuple of terms. For example, a predicate symbol P can
be applied to 2-tuple of terms (v,w), producing an atom P(v,w) of arity 2.

If P is predicate “>” (greater), v=StockPrice(x) and w=StockPrice(y) are
two terms then they produce an atom:

StockPrice(x) >StockPrice(y),

that is, price of stock x is greater than price of stock y.

Predicate P uses two terms v and w as its arguments. The number two is
the arity of this predicate. If a predicate or function has k arguments, the
number k is called arity of the predicate or function symbol. By convention,
function and predicate symbols are denoted by Name/Arity. Functions
may have variety of values, but predicates may have only Boolean values
true and false. The meaning of the rule for a k-arity predicate is the set of
k-tuples that satisfy the predicate. A tuple satisfies a rule if it satisfies one of
the Horn clauses that define the rule.

A unary (monadic) predicate is a predicate with arity 1. For example,
NASDAQ(x) is unary predicate.
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Quantifiers.

V means “for all”. For example, V x StockPrice(x) 2 0 means that for all
stocks, stock prices are non-negative.

3 means “there exists”. It is a way of stating the existence of some object

in the world without explicitly identifying it. For example, 3 x P(SP500,y)
means that

3 x StockPrice(SP500) 2 StockPrice(x),

1.e., there is stock x less expensive than SPS00 for a given time.
Using the introduced notation, the following clause can be written:

3 x (StockPrice(x) <$100 « TradeVolume (x)<100,000)

This is a notation typical for Prolog language. As we already mentioned,
more traditional logic notation uses the opposite sequence of expressions:

3 x (TradeVolume (x)<100,000 — StockPrice(x) <$100)

Both clauses are equivalent to the statement: “There is a stock such that
if its trade volume is less than 100,000 per day than its price is less than

$100 per share. Combining two quantifiers, a more complex clause can be
written:

Vx 3y (StockPrice(y) <100 <« TradeVolume (x)<100,000)

Predicates defined by a collection of examples are called extensionally
defined predicates, and predicates defined by a rule are called intension-
ally defined predicates. If predicates defined by rules then inference based
on these predicates can be explained in terms of these rules. Similarly, the
extensionally defined predicates correspond to the observable facts (or
the operational predicates) [Mitchell, Keller, & Kedar-Cabelli, 1986]. A
collection of intensionally defined predicates is also called domain knowl-
edge or domain theory.

Statements about a particular stock MSFT for a particular trading day
can be written as:

StockPrice(MSFT)>83,
NASDAQ(MSEFT),
TradeVolume(MSFT)=24,229,000.
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These statements can be written in clause notation also assuming empty if-
part:

StockPrice(MSFT)>83 «
NASDAQ(MSFT) «
TradeVolume(MSFT)=24,229,000 «

To execute a logic program in Prolog, a set of clauses S like that presented
below should be entered:

Picks (Bill, MSFT) «

Picks(Mary, INTC) «

Picks(Bill, AMD) «

Picks(Bill, INTC) «

Picks(Paul, RNWK) «

If a program is capable of executing logic programs, the following query
will get an automatic answer from the program:

Picks(Bill; x)?

This query is equivalent to the question: ”What stock does Bill pick?)
The logic program using a set of clauses S as background knowledge
will produce a number of answers:
x=MSFT, x=AMD, x=INTC
Similarly Picks(Steve,x)? and Picks(Mary,x)? can be asked. This will pro-
duce an answer: x = INTC.
For now, consider Picks(Steve,x)? There are several steps to get this kind
of inference:
1. Start search from the first clause;
2. Find any clause whose head has predicate Picks( , ) and the first
argument is Steve;
3. Ifno clause is found return, otherwise go to 4;
4. Associate x with the 2nd argument of the head literal (the value
associated with x is output); mark this clause.
5. Repeat 2-4 for unmarked clauses.
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4.6. Background knowledge

4.6.1. Arguments constraints and skipping useless hypotheses

Background knowledge fulfills a variety of functions in the data mining
process. One of the most important is reducing the number of hypotheses to
be tested to speed up learning and make this process tractable.

There are several approaches to reduce the size of the hypothesis space.
Below two of them are presented. They use constraints on arguments of
predicates from background knowledge B. The difference is that the first
approach uses constraints on a single argument and the second one uses
constraints on several arguments of a predicate defined in B.

The first approach called typing approach is based on information about
individual data types of arguments of a predicate. For instance, suppose only
an integer can be the first argument of predicate P and only the date
(M/D/Y) can be the second argument of this predicate. It would be wasteful
to test hypotheses with the following typing P(date, integer), P(integer, in-
teger) and P(date, integer). The only one correct type here is P(integer, date).

The second approach is called inter-argument constraints approach.
For example, predicate Equal(x,x) is always true if both arguments are the
same. Similarly, it is possible that for some predicate P for all x P(x,x)=0.
Therefore, testing hypotheses extended by adding Equal(x,x) or P(x,x)
should be avoided and the size of the hypothesis space explored can be
reduced.

The value of inter-argument constraints is illustrated by the experimental
fact that the FOCL algorithm, using typing and inter-argument con-
straints, was able to test 2.3 times less literals and examples than using only
typing. [Pazzani, Kibler, 1992]. Table 4.12 summarizes properties of the two
discussed approaches for reducing the number of hypotheses.

Table 4.12. Approaches for reducing hypothesis space

Approach 1: Approach 2:
Implementing a single argument Implementing inter-argument
constraint (typing ) constraints
Definition Properties of an individual argu- A relationship between different
ment of the predicate. arguments of a predicate
Example of Only an integer can be the first All of the variables in one
constraints argument of a predicate. predicate should be different,
Only date (M/D/Y) can be the sec- | i.e., a hypothesis should not
ond argument of the predicate. include predicate P(x,x), but
may include P(x,y)
Experiment FOCL algorithm, using typing and inter-argument constraints, was able
to test two times less literals and examples than using only typing
[M.Pazzani D. Kibler, 1992].
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4.6.2. Initial rules and improving search of hypotheses

This section considers another useful sort of background knowledge--a
(possibly incorrect) partial initial rule that approximates the concept
(rule) to be learned. There are two basic forms of this initial rule:

— extensional form and
— intensional form.

If a predicate is defined by other predicates, we say the definition is
intensional. Otherwise, a predicate given by example is called extensional.
It is also possible that background knowledge B contains a predicate in a
mixed way partially by examples and partially by other predicates. In gen-
eral, background knowledge presented in a mixed way reduces the search.
[Passani, Kibler, 1992].

Learning using initial extensional rule. An expert or another learning
system can provide an initial extensional rule [Widmer, 1990]. Then this
rule (initial concept) is refined by adding clauses [Passani, Kibler, 1992]:

1. An algorithm computes the criterion of optimality (usually information
gain) of each clause in the initial concept.
2. The literal (or conjunction of literals) with the maximum gain is added

to the end of the current clause (start clause can be null).

3. If the current clause covers some negative tuples (examples), additional
literals are added to rule out the negative tuples.

Learning using initial intensional rules. Next, consider domain knowl-
edge defined in terms of extensional and intensional initial predicates. Sys-
tems such as CIGOL [Muggleton & Buntine, 1988] make use of (or invent)
background knowledge of this form. For example, if an extensional defini-
tion of the predicate GrowingStock(x,y,z) is not given, it could be defined in
terms of the intensional predicate GreaterPrice by:

GrowingStock(x,y,z) « GreaterPrice(x,y), GreaterPrice(y,z),

where X, y, and z are prices of the stock for days t, t+1, and t+2, respec-
tively.

It is possible that the intensional predicate GrowingStock(x,y,z) added to
the hypothesis improves it, but each of predicates GreaterPrice(x,y) and
GreaterPrice(y,z) does not improve the hypothesis. Therefore, common
search methods may not discover a valuable stock regularity.

Pazzani and Kibler [1992] suggested that if the literal with the maximum
of the optimality criterion (gain) is intensional, then the literal is made ex-
tensional and the extensional definition is added to the clause under con-
struction. Table 4.13 shows this idea more specifically. The process is called
operationalization.
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Note that computation of the optimality criterion, which guides the
search, is different for extensional and intensional predicates. For inten-
sional predicates it is usually involves a Prolog proof.

Table 4.13. Operationalization [Pazzani, Kibler, 1992]
Procedure: Operationalize(Predicate, Pos, Neg)
Initialize ClauseBody to the empty set.
For each clause in the definition of Predicate
Compute_Gain(clause, Pos, Neg).
For the clause with the maximum gain,
for each literal T in the clause,
if T is extensional, add T to ClauseBody
else add Operationalize(T, Pos, Neg) to ClauseBody.

Potentially operationalization can generate very long rules, similarly to large
decision trees discussed in Chapter 3, when this extensional approach was
illustrated versus short intensional formulas.

Table 4.14. Partial bagcground knowledEe for stock market

Definition of target predicate to be learned:

Up(Stock(t), Stock(t+1),Stock(t+2)).

IF Stock(t+2)) < Stock(t+3) THEN this predicate should be true and the predicate is false
If Stock(t+2)) = Stock(t+3).

Up(Stock(t), Stock(t+1),Stock(t+2)) % Stock(t+2) < Stock(t+3)

To compute this predicate only stock prices Stock(t), Stock(t+1) and Stock(t+2)) can be
used. Actually the predicate should forecast stock price for date t+3, having stock prices
for the three preceding days. The learning algorithm should learn the predicate Up, .i.e.,
generate a logical rule combining Stock(t), Stock(t+1),Stock(t+2) such that
Up(Stock(t), Stock(t+1),Stock(t+2))< Stock(t+2) < Stock(t+3) for all training data.

Type : UP(float, float, float, float)
Positive examples, Pos: Ex1--(34.0, 35.1, 36.2, 37.4), Ex2--(37, 38.1, 344, 35.7)
Negative examples, Neg: Ex3--(33.2, 32.1, 33.7, 31.6), Ex4--(30.8 29.3, 28.8 27.9)

Intensional Predicate(s):
Q(Stock(t),Stock(t+1), Stock(t+2)) & Stock(t+1)-Stock(t) <Stock(t+2)-Stock(t+1)
Type : Q(float, float, float);

Extensional Predicates:

Monday (t). t type: date. This predicate is true for Mondays.
Pos : (04.05.99)(04.12.99)(04.19.99)...(11.01.99)
Tuesday(t). t type: date. This predicate is true for Tuesdays.
Pos : (04.06.99)(04.13.99)(04.20.99)...(11.02.99)
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Learning using initial intensional and extensional rules. The previous
consideration has shown that adding background knowledge can increase
the ability of algorithms to find solutions. Table 4.14 shows an example of a
partial background knowledge for a stock market forecast. It consists of
— adefinition of the target predicate UP(x,y,w,z) with four arguments to be

learned,

— typing information about x,y,w and z,

— intensional predicate Q(x,y,w) with three arguments to be used for dis-
covering predicate Up(x,y,w,z), and

— extensional predicates Monday(t) and Tuesday(t) to be used for discov-
ering Up(X,y,W,z).

In addition, Table 4.15 provides an initial intensional rule for the target concept
Up(x,y,w,z)

Table 4.15. Intensional initial rule for the target concept
l Up(Stock(t); Stock(t+1);Stock(t+2) « Q(Stock(t+1),Stock(t), Stock(t+2),Stock(t+1)) ]

This rule assumes that if growth was accelerated from date t to t+2 then
the stock will grow further on date t+3.

Background knowledge is called extended background knowledge if it
includes:
— extensional knowledge (training examples and extensional predicates),
- initial rules,
— intensional target concept definition.

Pazzani and Kibler [1992] found in experiments that extended back-
ground knowledge with a correct intensional target definition avoids ex-
haustive testing every variable of every predicate and increases the speed of
the search. In their experiments, a correct extensional definition of the tar-
get concept was found by testing only 2.35% of literals needed for rule dis-
covery if the target concept is not provided. However, the same research has
shown that extended background knowledge
— can increase the search space,

— can decrease the accuracy of the resulting hypothesis, if the background
knowledge is partially irrelevant to the task, and
— can increase the number of training examples required to achieve a
given accuracy.
These observations show the need for balancing initial intensional and
extensional predicates in background knowledge. One of them can be more
accurate and can speed up the search for regularity more than other. There-
fore, the following procedure will be more efficient:
1) Compare accuracy of intensional and extensional knowledge.
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2) Include a more accurate one in the background knowledge.

3) Discover regularities using the most accurate background knowledge
from 2).

4) Discover regularities using all background knowledge.
The modification of this mechanism includes use of probabilities assigned
to all types of background knowledge (see Section 4.8).

There are several ways to combine extensional and intensional knowl-
edge in discovering regularities. One of them is converting initial rules
(predicates) into extensional form (operationalize a clause) if it has positive
information gain.

The extensional predicates are compared to the induced literal with the
maximum information gain. This approach is used in the FOIL algorithm
(see Section 4.6.3).

In an explanation-based learning approach, the target concept is as-
sumed a correct, intensional definition of the concept to be learned and the
domain knowledge is assumed correct as well. An approach that is more
realistic is implemented in algorithms such as FOCL and MMDR. These
methods relax the assumption that the target concept and the domain knowl-
edge are correct.

4.6.3. Relational data mining and relational databases

Relational data mining and relational databases use different terms.
Translation of first-order logic terms used in RDM to terms used with rela-
tional databases is given below [Dzeroski, 1996].

Consider n sets (domains) Dy,Ds,...,Dj,...,Dy and their Cartesian product

D=D, xD;x...xDix...xD,,

i.e., the set of all possible n-tuples with i-th component from D; (i=1,...,n).
An n-ary relation p (in database terms) is a subset of such a Cartesian
product, pc D, ie., p can be defined by some set of n-tuples from D. A re-
lational database (RDB) consists of a set of relations [Ullman, 1988].

The database term n-ary relation p corresponds to the concept of n-ary
predicate p in first-order logic. Attributes of the relation p are called ar-
guments of the predicate. In ILP and first-order logic, a tuple

<ay,...,8p>
is called a ground fact p(ay ,...,8,. An n-ary relation p in a relational data-

base is actually a table of tuples like Table 4.16, which is an extended ver-
sion of Table 4.7.
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Table 4.16. Attribute-based data example

Stock price, $ Volume, x1000  Date Weekday Stock Event

54.6 3067.48 01.0499  Monday New product

55.3 35654.31 01.05.99 Tuesday Reported profit

56.1 3832.11 01.06.99 Wednesday Government activity

In Table 4.16 a tuples (term)
<54.6, 3067.48, 01.04.99, Monday, New product>

is an argument of predicate Stock
Stock(54.6, 3067.48, 01.04.99, Monday, New product).
which is true. Similarly for tuple
<55.3, 35654.31, 01.05.99, Tuesday, Reported profit>
predicate Stock is true:
Stock(55.3, 35654.31, 01.05.99, Tuesday, Reported profit)=True.
This example and the definition above show that a whole term like
<55.3, 35654.31, 01.05.99, Tuesday, Reported profit>

is a single argument x of predicate Stock(x). Database technology using
mechanism of attributes allows a user to access an individual attribute x; of
X=<X{,X2,X3,X4,X5>.

To be able to do the same in RDM the mechanism of projection func-
tions is used (see Section 4.4.2). Each projection function and attribute can
be associated with its own set of predicates like P546(x) shown in Section
442.

Let us consider predicate GreaterPrice(x,y):

GreaterPrice(Stock(t),Stock(t+1)) < StockPriceP(t)<StockPriceP(t+1).

for stock prices from Table 4.16: $54.60, $55.30 and $56.10.

This predicate can be expressed in two different table forms:

- object-object (Table 4.17), which is a standard predicate table form and
- database object-attribute form (Table 4.18).
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Table 4.17. Object-object table for predicate GreaterPrice(x,y)

Chapter 4

Object 01.04.99

Object 01.05.99

Object 01.06.99

Object 01.04.99 0 0 0
Object 01.05.99 1 0 0
Object 01.06.99 1 1 0
Table 4.18. Attribute-based table equivalent to predicate GreaterPrice(x,y)
Attribute Attribute Attribute
Greater 01.04.99 Greater 01.05.99 Greater 01.06.99
Object 01.04.99 0 0 0
Object 01.05.99 1 0 0
Object 01.06.99 1 1 0

A relational database language supports only the object-attribute form pre-
sented in Table 4.18, therefore the move from the standard predicate pres-
entation in Table 4.17 requires transformation to Table 4.18. Both of these
extensional presentations are very space consuming. Having 10,000 objects,
each of these tables will contain 10* elements. This simple example shows
that it is much more reasonable to store definitions of this kind of predicate
in intensional form:

GreaterPrice(Stock(t),Stock(t+1))<> StockPriceP(t)<StockPriceP(t+1)

as a short program in Prolog or other languages. However, some ILP soft-
ware can work only with extensional predicates like in Tables 4.17 and 4.18,
processing relatively small tasks.

4.7. Algorithms: FOIL and FOCL

4.7.1. Introduction

A variety of relational machine learning systems have been developed in
recent years [Mitchell, 1997]. Theoretically, these systems have many ad-
vantages. In practice though, the complexity of the language must be se-
verely restricted, reducing their applicability. For example, some systems
require that the concept definition be expressed in terms of attribute-value
pairs [Lebowitz, 1986; Danyluk, 1989] or only in terms of unary predi-
cates [Hirsh, 1989; Mooney, Ourston, 1989; Katz, 1989; Shavlik, Towell,
1989; Pazzani, 1989; Sarrett, Pazzani, 1989]. The systems that allow actual
relational concept definitions (e.g., OCCAM [Pazzani, 1990], IOE [Flann
& Dietterich, 1989], ML-SMART [Bergadano et al., 1989]) place strong
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restrictions on the form of induction and the initial knowledge that is pro-
vided to the system [Pazzani, Kibler, 1992],

In this section, we present three relational data mining methods: FOIL,
FOCL and MMDR. Algorithm FOIL [Quinlan, 1989; Quinlan, 1990] learns
constant-free Horn clauses, a useful subset of first-order predicate calculus.
Later FOIL was extended to use a variety of types of background knowledge
to increase the class of problems that can be solved, to decrease the hypothe-
sis space explored, and to increase the accuracy of learned rules.

Algorithm FOCL [Pazzani, Kibler, 1992], already mentioned several
times, extends FOIL. FOCL uses first order logic and FOIL's informa-
tion-based optimality metric in combination with background knowledge
(details are presented in Sections 4.7.2.and 4.7.3). This is reflected in its full
name -- First Order Combined Learner. FOCL has been tested on a variety
of problems [Pazzani, 1997] that includes a domain theory describing when
a student loan is required to be repaid [Pazzani & Brunk, 1990].

It is well known that the general problem of rule generating and testing is
NP-complete [Hyafil, Rivest, 1976]. Therefore, we face the problem of de-
signing NP-complete algorithms. There are several related questions. What
determines the number of rules to be tested? When should one stop gener-
ating rules? What is the justification for specifying particular expressions
instead of any other expressions? FOCL, FOIL and MMDR use different
stop criteria and different mechanisms to generate rules for testing (details
are presented in Sections 4.7.2.and 4.7.3). MMRD selects rules which are
simplest and consistent with measurement scales (section 4.9.2, [Krantz et
all, 1971, 1989, 1990]) for a particular task. The algorithm stops generating
new rules when the rules become too complex (i.e., statistically insignificant
for the data) in spite of the possibly high accuracy of the rules when applied
to training data. The obvious other stop criterion is time limitation. FOIL
and FOCL are based on the information gain criterion.

4.7.2. FOIL

The description of FOIL and FOCL below is based on [Pazzani, Kibler
1992]. FOIL uses positive and negative examples {e*}, {€’} for some con-
cept C, and related (background) predicates. FOIL tries to generate a rule R
combining these predicates in such a way that R is true for positive exam-
ples, R(e")=1, and false for negative examples, R(e")=0. This rule should not
contain constant and function symbols, but can contain negated predicates
in both FOIL and FOCL. FOIL design is shown in Tables 4.19 and 4.20
[Pazzani, Kibler, 1992].

FOIL has two major stages:
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— theseparate stage begins anew clause, and
— the conquer stage constructs a conjunction of literals to serve as the
body of the clause.

Table 4.19. FOIL Design 1
Let POS be the positive examples.
Let NEG be the negative examples.
Set NewClauseBody to empty.
Until POS is empty do:
Separate: (begins new clauses)
Remove from POS all examples that satisfy the NewClauseBody.
Reset NEG to the original negative examples.
Reset NewClauseBody to empty.
Until NEG is empty do:
Conquer: (build clause body)
Choose a literal L.
Conjoin L to NewClauseBody.
Remove from NEG examples that do not satisfy L.

Each clause describes some subset of the positive examples and no
negative examples. FOIL uses two operators:
1. Start a new, empty clause, and
2. Add a literal to the end of the current clause.
Adding literals continues until no negative example is covered by the clause.
These literals are added to the end of the current clause. FOIL starts new
clauses until all positive examples are covered by some clause.

Adding literals assumes a mechanism to generate literals, i.e., a particu-
lar combination of variables and predicate names. If a predicate (predicate
name) is already selected the choice of variables is called a variablization
(of the predicate) [Pazzani, Kibler, 1992]. If the variable chosen already oc-
curs in an unnegated literal of the rule, then the variable is called old. Oth-
erwise, the variable is called new. FOIL and FOCL require at least one old
variable. This old variable can be in either the head or the current body of
the rule (Horn clause).

FOIL uses hill climbing optimization approach to add the literal with the
maximum information gain to a clause (rule). This requires computing the
information gain for each variablization of each predicate P. The informa-
tion gain metric used by FOIL is

Gain(Literal) = T "**(log 5 (P)/P,+N)) - log 5 (Po/Po+No),
where

Po and Ny are the numbers of positive and negative tuples before adding the
literal to the clause,
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P, and N, are the numbers of positive and negative tuples after adding the
literal to the clause, and

T ** is the number of positive tuples before adding the literal that has at least
one corresponding extension in the positive tuples after adding the literal
[Quinlan, 1990].

Cost. A hill-climbing search used by FOIL depends on the branching
factor of the search tree. This branching factor is an exponential function:
(1) of the arity of the available predicates, (2) of the arity of the predicate to
be learned, and (3) of the length of the clause that is being learned [Pazzani,
Kibler, 1992]. Two measures estimate the cost of FOIL computation:

— the theory-cost--the number of different literals that can be chosen to
extend the body of the given clause (does not depends on the number of

— evaluation-cost --the cost of computing the information gain of each
training examples),

literal (depends on the number of training examples).

Table 4.20. FOIL Design 11 [Pazzani, Kibler, 1992].
Let POS be the positive tuples.
Let NEG be the negative tuples.
Set NewClauseBody to empty.
Until POS is empty do:
Separate: (begins new clauses)
Remove from POS all tuples that satisfy the NewClauseBody.
Reset Old to be those variables used in P.
Reset NEG to the original negative examples.
Reset NewClauseBody to empty.
Until NEG is empty do:
Conquer: (refines clause body)
Choose a predicate P.
Choose a variablization of the predicate.
Compute information gain of P and its negation.
Choose literal L with the most information gain.
Conjoin the literal with NewClauseBody.
Add any new variables to Old
Let POS be all extensions of POS that are satisfied by the literal.
Let NEG be all extensions of NEG that are satisfied by the literal.

Heuristic. Testing the variablizations of some predicates is avoided by a
branch-and-bound pruning heuristic in FOIL. The idea is that some variabli-
zation can be more specific than another. In a more general variablization,
an old variable is replaced with a new variable. The heuristic prefers a more
general variablization, computing maximum possible information gain of a
predicate with this variablization.

An additional stopping criterion allows FOIL to learn from noisy data.
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4.7.3. FOCL

Algorithm FOCL [Pazzani, 1997, Pazzani, Kibler, 1992] extends and
modifies FOIL to permit the various forms of background knowledge:
— constraints to limit the search space,
— predicates defined by a rule in addition to predicates defined by a col-

lection of examples,
— input a partial, possibly incorrect rule that is an initial approximation

of the predicate to be learned.

These extensions guide construction of a clause by selecting literals to test.
FOCL attempts to constrain search by using variable typing, in-
ter-argument constraints, and an iterative-widening approach to add
new variables. FOCL specification is presented in Table 4.21.

Table 4.21. FOCL Specification [Pazzani, Kibler, 1992].
Given:
1. The name of a predicate of known arity.
2. A set of positive tuples.
3. A set of negative tuples.
4. A set of extensionally defined predicates.
5. A set of intensionally defined predicates (optional).
6. A set of constraints (e.g., typing) on the intensional and extensional
predicates (optional).
7. An initial (operational or non-operational) rule (optional).

Create: A rule in terms of the extensional predicates such that no clause covers any nega-
tive examples and some clause covers every positive example

Summary of FOCL. Authors of FOCL draw a number of important conclu-
sions about the complexity of learning rules and the value of different sorts
of knowledge. Some of these conclusions are summarized here:

1. The branching factor grows exponentially in the arity of the available
predicates and the predicate to be learned.

2. The branching factor grows exponentially in the number of new vari-
ables introduced.

3. The difficulty in learning a rule is linearly proportional to the number of
clauses in the rule.

4. Knowledge about data types provides an exponential decrease for a
search necessary to find a rule.

5. Any method (argument constraints, semantic constraints, typing, sym-
metry, etc.) that eliminates fruitless paths decreases the search cost and
increases the accuracy.

6. The uniform evaluation function allows FOCL to tolerate domain theo-
ries that are both incorrect and incomplete.



Relational Data Mining (RDM) 151

Advantages of FOCL were experimentally confirmed by Pazzani and Kibler
(see Section 4.5.2).

4.8. Algorithm MMDR
4.8.1. Approach

A Machine Method for Discovering Regularities (MMDR) contains sev-
eral extensions over other RDM algorithms. It permits various forms of back-
ground knowledge to be exploited. The goal of the MMDR algorithm is to cre-
ate probabilistic rules in terms of the relations (predicates and literals) defined
by a collection of examples and other forms of background knowledge.
MMDR as well as FOCL has several advantages over FOIL:

Limits the search space by using constraints.

- Improves the search of hypotheses by using background knowledge with
predicates defined by a rule directly in addition to predicates defined
by a collection of examples.

— Improves the search of hypotheses by accepting as input a partial, pos-
sibly incorrect rule that is an initial approximation of the predicate to be

learned.
There are also advantages of MMRD over FOCL:
— Limits the search space by using the statistical significance of hypothe-
ses.
— Limits the search space by using the strength of data types scales.
— Shortens the final discovered rule by using the initial set of hypotheses in
intensional form directly (without operationalization).
The advantages above represent a way of generalization used in MMDR.
Generalization is the critical issue in applying data-driven forecasting sys-
tems. The MMDR method generalizes data through “lawlike” logical prob-
abilistic rules presented in first order logic (Section 4.8.2).

Theoretical advantages of MMDR generalization are presented in
[Vityaev, 1976, 1983, 1992, Vityaev, Moskvitin, 1993, Vityaev et al, 1995,
Kovalerchuk, 1973, Zagoruiko, 1976, Samokhvalov, 1973]. This approach
has some similarity with the hint approach [Abu-Mostafa, 1990]. “A hint
may take the form of a global constraint on f, such as a symmetry property
or an invariance. It may also be partial information about the implementa-
tion of f” [Abu-Mostafa, 1990]. The main source for hints in first-order
logic rules is representative measurement theory [Krantz et al., 1971, 1989,
1990]. Note that a class of general propositional and first-order logic rules,
covered by MMDR is wider than a class of decision trees (see Chapter 3).
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MMDR selects rules, which are simplest and consistent with measure-
ment scales for a particular task. Initial rule/hypotheses generation for fur-
ther selection is problem-dependent. In Chapter 5, we present a set of
rules/hypotheses specifically generated as an initial set of hypotheses for
financial time series. This set of hypotheses can serve as a catalogue of ini-
tial rules/hypotheses to be tested (learned) for stock market forecasts. De-
tailed discussion about a mechanism of initial rule selection using measure-
ment theory [Krantz et all, 1971, 1989, 1990] viewpoint is presented in Sec-
tion 4.10.2.

The steps of MMDR are described in Figure 4.1. The first step selects
and/or generates a class of logical rules suitable for a particular task. The
next step learns the particular first-order logic rules using available training
data. Then the first-order logic rules on training data using Fisher statistical
test [Kendall, Stuart, 1977; Cramer, 1998] are tested. After that statistically
significant rules are selected and Occam’s razor principle is applied: the
simplest hypothesis (rule) that fits the data is preferred [Mitchell, 1997, p.
65]. The last step creates interval and threshold forecasts using selected
logical rules: IF A(x,y,...,z) THEN B(x,y....,Z).

MMDR models
(selecting/generating logical rules
with variables x,y,..,z:

IF A(x,y,...,z) THEN B(x,y,...,z)

3

Learning logical rules on training
data using conditional
probabilities of inference
P@Bxy,....z2)/AK,Y,...2)

Testing and selecting
logical rules (Occam’s
A razor, Fisher test)

Creating interval and threshold
forecasts using rules
IF A(x.y,...,z) THEN B(x,y,...,z)
and p-quintiles

Figure 4.1. Flow diagram for MMDR: steps and technique

It is well know that the general problem of rule generating and testing is
NP-complete. MMDR addresses this issue and stops generating new rules
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when rules become too complex (i.e., statistically insignificant for the data)
in spite of possible high accuracy of these rules for the training data. In this
way, the problem becomes tractable. The obvious other stop criterion is a
time limitation.

Probabilistic and other first-order methods in machine learning were de-
veloped in parallel in the West and in Russia [e.g, Samokhvalov, 1973;
Zagoruiko, 1979; Vityaev E. 1983; Int. J. of Pattern Recognition and Artifi-
cial Intelligence, 1989; Vityaev, 1976, 1983; Kovalerchuk, 1973,1976] for
two decades. Due to many historical reasons, the work in Russia was not
well known in the West. The research was concentrated in Pattern Recog-
nition and Applied Logic laboratories in the Institute of Mathematics of the
Russian Academy of Sciences (Akademgorodok, Novosibirsk).

What is the difference of MMDR from other data mining learning meth-
ods dealing with first-order logic [Mitchell, 1997; Russel and Norvig,
1995]7  From our viewpoint, the main emphasis in other first-order methods
[Mitchell, 1997, Russel and Norvig, 1995] is on two computational com-
plexity issues:

—how wide is the class of hypotheses tested by the particular data mining
algorithms, and

—how does one construct a learning algorithm to find deterministic rules
limiting a search space.

The emphasis of MMDR is on probabilistic first-order rules and
measurement issues for numerical relational methods ie., how can one
move from a real measurement to a first-order logic representation. This is a
non-trivial task [Krantz et all, 1971, 1989, 1990]. For example, how does
one represent temperature measurement in terms of first-order logic without
losing the essence of the attribute (temperature in this case) and without in-
putting unnecessary conventional properties? For instance, Fahrenheit and
Celsius zeros of temperature are arbitrary conventions in contrast with the
Kelvin scale where zero is the lowest possible temperature (the physical
zero). Therefore incorporating properties of the Fahrenheit zero into first-
order rules may force us to discover/learn properties of this convention
along with more significant scale invariant forecasting rules. Learning algo-
rithms in the space with those kind of arbitrary properties may be very time
consuming and may produce inappropriate rules.

MMDR uses hypothesis/rule generation and selection processes, based on
fundamental representative measurement theory [Krantz, Luce, Suppes and
Tversky, 1971, 1989, 1990.] Basic concepts of this theory are presented in
Section 4.9.3. The original challenge for MMDR was the simulation of dis-
covering scientific laws from empirical data in chemistry and physics.
There is a well-know difference between “black box” models and funda-
mental models (Iaws) in modern physics. The latter have much longer life,
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wider scope, and a solid background. There is reason to believe that MMDR
caught some important features of discovering these regularities (“laws”).
As was already mentioned, this is an area of extensive research during the
last decades.

4.8.2. MMDR algorithm and existence theorem

MMBDR expresses patterns in first order logic and assigns probabilities to
rules generated by composing patterns. As any technique based on logic
rules, this technique allows one to obtain human-readable forecasting
rules that are interpretable in financial language and it provides a forecast.
An expert can evaluate the correctness of the forecast as well as forecasting
rules. MMDR and related “Discovery” software systems [Vityaev E. 1983;
Vityaev, Moskvitin, 1993] generalize data through “law-like” logical prob-
abilistic rules.

Conceptually, law-like rules came from the philosophy of science.
These rules attempt to mathematically capture the essential features of sci-
entific laws: (4) high level of generalization, (2) simplicity (Occam’s razor),
and (3) refutability. The first feature -- generalization -- means that any
other regularity covering the same events would be less general, ie., appli-
cable only to the part of testing examples covered by the law-like regularity.
The second feature -- simplicity -- reflects the fact that a law-like rule is
shorter than other rules. The law-like rule, R1, is more refutable than an-
other rule, R2, if there are more testing examples which refute Rl than R2,
but the examples fail to refute RI.

Formally, an IF-THEN rule C is

A& ...&AL = Ay,
where the [F-part, A;&...&Ag consists of true/false logical statements
Ay,...,Ay, and the THEN-part consists of a single logical statement A,.
Statements A; are some given refutable statements or their negations, which
are also refutable. Sub-rules can be generated by truncating the IF-part, e.g.,
A]&Az = Ao , Al&Az&Ag = Ao.
For rule C its conditional probability

Prob(C) = Prob(A¢/A &...&Ay)

is defined. Similarly conditional probabilities



Relational Data Mining (RDM) 155
Prob(Ao/Ai&...&Ap)

are defined for sub-rules C;of the form
Ap& ... &Ay = Ay, where {A;, ....,An } C {A1, ..., Ak }

Conditional probability Prob(C) = Prob(A¢/A &...&Ay) is used to estimate
the forecasting power of the rule to predict Ae.The rule is “law-like” iff all
of its sub-rules have less conditional probability than the rule, and the statis-
tical significance of it is established. Each sub-rule C; generalizes rule C,
i.e., potentially C; is true for a larger set of instances [Mitchell, 1997]. An-
other definition of “law-like” rules can be stated in terms of generalization.
The rule is a “law-like” rule iff it cannot be generalized without producing
a statistically significant reduction in its conditional probability. “Law-like”
rules defined in this way hold all three properties of scientific laws. They
are: (1) general rules from a logical perspective, (2) simple, and (3) refut-
able. Chapter 5 presents some rules extracted using this approach.

MMDR and the “Discovery” software [Vityaev E. 1983; Vityaev, Mo-
skvitin, 1993; Vityaev 1992] searches all chains

Cl ’ CZ [ICERT Cm-la Cm

of nested “law-like” subrules, where C; is a sub-rule of rule C, , C; =
sub(C), C, is a sub-rule of rule Cs, C; = sub(C;) and finally Cg is a sub-
rule ofrule Cp, Cne1 = sub(Cp). Also,

Prob(C,;) < Prob(Cy,), ... , Prob(Cy,.;) < Prob(Cp).

There is a theorem [Vityaev, 1992] that all rules, which have a maximum
value of conditional probability, can be found at the end of such chains.
The algorithm stops generating new rules when they become too complex
(ie., statistically insignificant for the data) even if the rules are highly accu-
rate on training data. The Fisher statistical test is used in this algorithm for
testing statistical significance. The obvious other stop criterion is the time
limitation.

Below MMDR is presented more formally using standard first-order
logic terms described in Section 4.4.3. Let us consider the set RL of all pos-
sible rules of the form:

A&k.. . &A, =A, “4)

where Ag,Ay,...,Aq are atomic formulas in one of the following forms
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Pi(ty,....%) and (t=g)°,

Here t(z'),...,2'%), 8(Z%,.++sZ%), 1(Z 1o 0sZ' 115 -+ t(Z1s---,Z) are terms,

and z'y,...,2% Z%1,.+4sZ8, Z' 150 0sZ'1ts oov e, e 2%

are individual constants. Also e = 1(0) is an indicator if there is a negation
of the predicate. If e=1 then there is no negation of a predicate and if e=0
then a predicate is negated. For instance, (t=g)° means that t=g, and simi-
larly,

PYt,,....4) © —P(ty,....t).

The formula (4) means that for every substitution of instances for the indi-
vidual constants, if the IF-part is true then the THEN-part will also be true.
In this substitution, objects from data D represent individual constants.

The goal of MMDR is finding BST rules, defined below. BST stands for
“best”.

Definition 1. Rule C = By,...,.Bi=>A, where 1> land p(By,...,.B))>0

is called a BST rule for atomic formula A and data D ifand only if:

1. wW(C) = wA/B&...&B) > u(A),

where B;&...&B, is a condition generated using data D,

2. Rule C has maximum of conditional probability p(C) among rules satis-
fying condition 1 and generated by the same data, and

3. For any rule C* satisfying conditions 1 and 2, the property C = C*is
true.

This means that BST rule C is the strongest rule.

Condition 1 means that rule C has a reasonable If-part (premise), ie.,
the conditional probability p of rule C is greater then the probability of
atomic formula A itself. If this condition is not satisfied then there is no rea-
son to add the premise for forecasting A. If atom A has a high probability
itself then it can be predicted without a premise.

Condition 2 brings the “strongest” rule, ie., the rule with maximum
conditional probability among rules satisfying condition 1 above for the
same data.

Condition 3 means that a BST rule is the most “general” among rules
satisfying conditions 1 and 2, i.e., a BST rule covers the widest set of cases
from D for which it can be applied. Formally, this idea is presented in Defi-
nition 2.
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Definition 2. Relation C—C’ is true for rules C and C’ if
{Ah- ' -)An} c {A'l’- . "A,n'}’

where C = Aj&...&A, = Ap and C = A" \&...&A'y = Ag, n,n' > 0.

Now the task is to find the set of all BST rules for data D. It is well
known that the exhaustive search of all rules (4) for finding the set of BST
rules is practically impossible if predicates with more than one variable are
used. Therefore, the search should be constrained to a lesser set of rules, but
still allowing the discovery of BST rules. To accomplish this task use the
following definition and theorem.

Definition 3. Rule (4) is called a regularity if it satisfies the following
conditions:

WA&...&A,) > 0,

HWAYA1&...&A,) > W(Ay/SubConjunction(A&...&A,))
where p is the probability of an expression, and

SubConjunction(A&...&A,) = A" &...&A
{A,la- . -’A'k} c {Ah- . -,An}a {A.l;' . 'aA’k} #d.

Theorem 1. If rule R is a BST rule for data D, then rule R is regularity on
data D [Vityaev, 1992].

Let us denote the set of all regularities (rules) by RG. It follows from
Theorem 1 that the task now is to find the set of rules RG. Having RG we
will be able to make all “best predictions” using regularities from RG.

Partition the set of regularities RG to get chains, called chains of se-
mantic probabilistic inference [Vityaev, 1992],

CoPCat® ... »> C; >C> A,

where » is a symbol for semantic probabilistic inference.

Actually, the task consists of finding all semantic probabilistic infer-
ences. The following heuristic rule is used as the base for a practical im-
plementation of semantic probabilistic inference:

all regularities can be found by searching all chains beginning with a
regularity with a short If-part.
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This heuristic is used in MMDR for arranging the search of regularities. In
spite of the use of a heuristic no one BST rule will be lost. MMDR like
FOIL and FOCL operates with Horn clauses (Section 4.4.3). However, the
theory was developed for a general case (see the mentioned theorem
[Vityaev, 1992, Vityaev et al, 1995]).

Below we use Horn clauses

A]&&An = Ay (5)
where Aqg,A),...,A, are atomic formulas (literals) of the form
Pte(zll,. . .,Zt,), t = 0,1,. . .,n.

Each P is a predicate and 2',...,2%, t = 0,1,...,nare individual constants
(constants for short). Two formulas of type (5) are equivalent if each of
them can be obtained from the other by a one-to-one replacement of con-
stants. We will denote all non-equivalent formulas of type (5) as a RuleSet.

The concept of Data Type was defined in Section 4.9. Each data type is
associated with a specific set of predicates. Actually, these predicates and
their properties define a data type. Several examples of these predicates are
presented in Section 4.10.2.

LetPr= {P;e1} be a set of predicates associated with a specific data type
and leZ={e, z;,set of individual constants. Atomic formulas A,
which are predicates from Pr or their negations defined on a set of constants
from Z are used. Below are presented core concepts used in MMRD.

Regularity: This is a special type of formulas from the RuleSet. For in-
stance, in a financial time series, constants Z',...,2% can be represented by
days with properties:

(Z1 <sap 22)&(2 <sep 23)& ... & (Zn) <sap Zn) = (Zn <s&P Zforecast)s

where z; <sgp 2z means that the SP500C is smaller on day z, than on day z
and that this rule forecasts z, <sgp Zforecasts 1.6., SPS00C for the next day will
be greater than SPS00C on day z, if the given IF-part of the rule is satisfied.
More regularities for financial applications are presented in Chapter 5.

Next a formal concept of regularity type, allowing us to distinguish
regularities from other formulas is also introduced. The general intuitive
idea of a formal concept of regularity is that regularity represents the struc-
ture of relations between components. It is important to note that the regu-
larity type is defined not as a property of an individual formula itself, but as
relations of this formula with other formulas. In particular, a chain of
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formulas is introduced as a part of regularity type. These formulas are or-
dered by a “semantic probabilistic inference”(») relation like

C»..C..>C, »C > A.

Allrules C; are regularities. The last rule C, is called a BST regularity. This
ordering already was called a semantic probabilistic inference, because

Cin > G

means that probability of Ci4y 1s greater than the probability of C; and there
is a logical relation (sub-rule) between IF-parts of C; and Cis,

In this way, a heuristic is introduced into a search process, which makes
the search in the hypothesis space tractable. The MMDR begins from sim-
plest rules and generates a tree of these chains implementing a kind of
Branch-and-Bound method. This method begins from Breadth-First search
among formulas of a limited length. This set of formulas is called an initial
set of rules. Suppose that initial rule C,is obtained. This rule is a tail of
some chain like

C>..Ci.> C; >C > A.

It is possible, in the simplest case, to have just Co»A. Then a set of possible
additions {Cy+ ™™} for C, are generated by calling a function Spe-
cilize_rule(C,), which generates possible addtions

Specilize_rule(Cy={Cys "},

Specialization using function Specilize_rule(Cy) is guided by the strength of
attribute scales (expressed in data type). At first, MMDR adds predicates
expressing the simplest (rough) data types like nominal scale. Further prop-
erties of more complex scales like ordering and interval scales to refine a
rule are added. We also need a Boolean function IsRegularity(R,D) which
will test if R satisfies the definition of a regularity for data D. This function
is true if R satisfies the definition and it is false if R does not satisfy the
definition.

4.8.3. Fisher test

In Definition 1 in the previous section, conditions for BST rules (prob-
abilistic “laws”) were defined. These conditions are tested by the Fisher test
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[Kendall, Stuart, 1977; Cramer, 1998], which is presented in this section for
logical expressions. Consider a rule

A] = Ao.

The IF-part of this rule contains only one predicate symbol A;, which po-
tentially may be deleted in the generalization process. This generalization
can be justified only if the probability of rule

C=(=Aj)
with empty IF-part is greater than the probability of initial rule
A=A, i.e., H(AO/AO > )J.(Ao)

To test Condition 2 from Definition 1 the last inequality should be tested.
This inequality can be rewritten as follows

H(AJ/A)* (A1) > W(Ad)* W(Ay),
using a known probabilistic property p(A¢/Aj)*u(A;)=pu(Ac&A).
The inequality is rewritten again to obtain its equivalent form
H(Ao&A:) > H(Ag)*H(A,).

To test the last inequality statistically, the hypothesis Hp about statistical
independence of predicates A; and Ao is generated

Ho: (A& A1) = i(Ao)* W(A)).
Next Hp is tested against the alternative hypothesis H,
Hi: (A& Ay) # H(Ao)*I(A)),

Mathematical properties of the null hypothesis Hp are described in [Ken-
dall, Stuart, 1977]. If Ho is confirmed, then Ay and Ag are independent. Thus,
inequality p(Ao/A;)> W(Ao) for conditional probability p(As/A,) is not true.
Therefore, formula Ay = Ag is not a probabilistic “law” (BST rule).

If hypothesis Hp is rejected then the alternative hypothesis H, is
true. Hence, A, and Ao are dependent. Hy is also a hypothesis about equality
of probabilities in two sets:
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Ho: p(Ao&A;) = n(Ag)*1(A))
against the alternative hypothesis
Hi: t(Ao&Ay) # W(Ag)*I(A)).

If Hqis rejected then p(Ao/A1) > u(Aq) Or H(A/A() < U(Aq). If the first ine-
quality is true than the tested formula (rule) Ay => Ao is stronger then Ag
itself. To decide if p(Ao/Ay) > u(Ao) is true, one can determine which of the
following inequalities is true

n(Ao&A1) > (n(Ao)*n(AIN, and n(Ac&A:) < (n(Ao)*n(A)IN,

where N is the total number examples, n(A;), n(A%), n(A;&Ap) and
n(A%&A,) the number of examples with true A;, A%, Aj&Aq and A’\&A,
respectively.

To test hypothesis Hp against H, the exact Fisher test [Kendall, Stuart,
1977] is used. If, using this test, the null hypothesis Hp is accepted at some
significance level a, then predicates Ay u A% are independent. Therefore,
there is no regularity. If Hp is rejected, then H, is accepted. If H; corre-
sponds to p(A¢/A1) > u(Ap), then the tested formula (rule) Ay => Ay is ac-
cepted at the significance level a.

This means that potentially rule A; = Aq can be a BST rule if its condi-
tional probability will be highest among other rules.

Consider a more general hypothesis (rule) C = (Ai&...&A= A%) € S.
This case can be solved using the same method.

Let DC = {A\,...,Aqs}, D= DC (D is a proper subset of DC), and DC%=
A\&...&A,, D* be the conjunction of literals from D.

To test ifrule C is a BST the following inequality should be tested:

l.t(Aoo/DC&)> MAOQ/D&)

for every subset of D(including @).
Consider conjunction D* as a formula R, and consider conjunction of lit-
erals from DC\D as another formula R,. If D = @, then R, = true, and

W(P*y/D*) = w(P*).
For the testing of rule C the inequality should be considered:

B( A/R1&R;) > p(A/R)).

Having p(Ao/Ri&R;z) = (Ae&R i &R2)/W(R1&R;) = p(Ao&R/R )/u(R/Ry),
the previous inequality is transformed to the inequality



162 Chapter 4

H(A&R,/R ) > W(Ro/R))*W(AQ/R).

u(DC*) > 0, (Ry) > 0, and p(Ry) > 0 because n[A&...&A,] > 0, andD <
DC and DC\D < DC. To test the last inequality consider the null hypothesis
about independence

Ho: ].l(A o&Rz/R|) = }L(Rz/Rl)*H(AO/RI)
against the alternative hypothesis
H): p(Ae&R2/R}) # W(R/R))*W(A/R)).

Considering only tuples where formula Ry is true a subalgebra R of Boolean
algebra of all sets of tuples is identified. A probabilistic measure p’(A) =
WA&R)/r(R)) is defined for any atom A. Then hypotheses Ho and H,can

be written

Ho: W’ (Ao&R;) = p'(R2)*1’(Ao), and
Hy: w(Ao&R;) # ' (R2)*1’(Ao).

Hypothesis Hy is also tested with the Fisher test at some significance level
a. Rule C will be a regularity at the significance level a, if the null hypothe-
sis Ho is rejected at the level a for any subset D < DCand all hypotheses H;
are accepted with inequalities corresponding to p(Ao/A)) > p(Ao). If C is
rejected (as regularity), then we need to test if any more general part of C
can be accepted at the same significance level. To generate these parts we
use as DC all sequentially possible subsets D < DC (proper subsets) of the
[F-part of the rule. For each D* « D < DC all hypotheses are tested again to
find if the rule with IF-part D is a regularity. As was mentioned above BST
rules are also “probabilistic laws” (regularities).

4.8.4. MMDR pseudocode

MMBDR pseudocode is presented is this Section in C++ style as a value
returning function MMDR(D, InitialRuleSet) with two parameters: data (D)
and set of initial rules (InitialRuleSet). This function returns a learned rule
(Learned_rule) as a set of Horn clauses.
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Table 4.22. MMDR function returning a learned rule
MMDR(DataType D, RuleTypeSet InitialRuleSet)
® Learned_rule « {}
ei=1 // set up the first level (depth of search tree to find a rule)
e while InitialRuleSet, do
® NewRule(i) «- Some_rule_from(InitialRuleSet)
o If (Is_Regularity(NewRule(i),D))
e then
e Learned_Rule = AddNewRuletoLearnedRules(Learned_Rule, NewRule(i))
* RuleSet(I) = Spec.Specialize_rule(NewRule(i))
* while (i > 0) do
¢ while RuleSet(i) do
* Spec.Rule «
Some_rule_from(Spec.Specialize_rule(NewRule(i)))
// Function Some_rule...selects the next rule
// NewRule(i) is a Rule of i-th depth level
e If (Is_Regularity(Spec.Rule,D))
e then
eLearned_Rule=AddNewRuletoLearnedRule(Learned_Rule,
Spec.Rule)
e i++ // move to the next i+1 level of the search tree.
e NewRule(i) = Spec.Rule
* RuleSet(i) = Spec.Specialize_rule(NewRule(i))
// changes in while condition.

o ¢lse
® RuleSet(i) = Delete_tested_NewRule(RuleSet(i), Spec.Rule)
e i-- // Go to the previous i-1 level and
// change the rule set RuleSet(i)
e InitialRuleSet =Delete_tested_NewRule(InitialRuleSet, NewRule(i))
e Return Learned_Rule

This pseudocode includes declarations of five top-level components:

- Data D (as an object of the type dataType),

- An initial set of rules, consecutive sets of rules and finally a set of
learned_rule (as objects ofthe type ruleSetType),

- arule R(as an object of the type ruleType),

- avalue returning function Specialize_rule(Rule) for generating a more
specialized rule R’ from Rule R,

a Boolean function (predicate) Is Regularity(Rule(i),D). This function tests

ifrule R(i) is a regularity on data D, i.e., it is statistical significant on D and

has higher probability than its subrules on D. Functions Specialize_rule and
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Is_Regularity used in MMDR pseudocode are presented in Tables 4.23,
4.24.

Table 4.23. Rule returning function Specialize rule

RuleTypeSet Specialize_rule(Rule) //Rule = A\&...&A, =A,
While Pr do // Pr = {P;¢} — the set of all Boolean member functions of DataType class.
P« Pr

e NewRule = AddNewPredicateToThePremiseOfTheRule(P,Rule)
// NewRule = (P&A,&...&A, = Ay)
e If Is_RuleType(NewRule)

then AddNewRuleToSpecializeRule(NewRule, Specialize_rule)
* NewRule = AddNewPredicateToThePremiseOfTheRule(NotP,Rule)
// NewRule = (NotP&A &...&A, — Ao)
e If Is_RuleType(NewRule)

then AddNewRuleToSpecializeRule(NewRule, Specialize_rule)
® Return Specialize_rule

Table 4.24. Boolean function Is_Regularity

Boolean Is_Regularity(Rule(i),D) // Rule(i)= A &...&A; =A,
/I 'This procedure is detailed in the previous section.

If according to the Fisher test with some confidence level o the following conditions
are true,

(A& &Ay) > 0;

* B(AYA &...&A,) > p(Ay/SubConjunction(A, &...&A,));
where p is a probability of expression,
SubConjunction(A,&...&A,) = A | &...&A ',

(A, AL} € {Ay,...,A,), and {A'),...,A\} 2 D;
then Return true

else Return false

Above components of MMDR are supported by the declarations:

class DataType// this class defines all attributes used in the learning task

{
Public:

class attributel;
class attribute2;
class attribute3;

class attribute_n;

char z1,72,73,...zn; // individual constants--names for available data
/lobjects/individuals
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class attribute //this class describes properties of an attribute

Lo

public:

Boolean memberfunction_l(z',...,2')
// member functions depend on a specific attribute
/I examples are presented in Section 4.10.2.

Boolean memberfunction_2(zZ2,...,22a)

Boolean memberfunction_3(z*,...,2°s)

ﬁéolean memberfunction_m (Z"-.+,Z" tm)

J

Classs RuleType // this class is domain specific
{
// There is no generic format for RuleType.
// Financial examples are presented in Chapter 5 and
// in several other places in the book.

J

Global variables:
Pr={P;e1} //the set of all Boolean member functions of Data Type
/lclass. These Boolean member functions are called
/1 predicates in first-order logic and ILP.
Z = {2y, 75,...} — the set of constants.
Z(Rule) — all constants of the Rule.

4.8.5.  Comparison of FOIL and MMDR

In Table 4.25 a comparison of major features of the FOIL and MMDR
algorithms are presented. Advantages of MMDR include the possibility of
value forecast and evaluate a learned rule statistically, i.e., evaluate its pre-
dictive power. In addition, the search mechanism does not miss the best
rules.

A number of other RDM methods have been developed during the last
few decades. Several methods are reviewed in [Mitchell, 1997] and [Paz-
zani, Kibler, 1992]. Some operate in overly general background knowledge
(e.g., IOU system [Mooney Ourston, 1989], A-EBL [Cohen, 1990]). Some
permit specific background knowledge domains (e.g, EITHER [Ourston,
Mooney, 1990], ML-SMART [Bergadano, Giordana, 1988]). Recent study
concentrates on RDM methods handling a variety of qualitative and quanti-
tative data types in combination with a probabilistic approach.
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Table 4.25. Comparison of FOIL and MMDR

Chapter 4

FOIL

MMDR

Solves classification tasks.

Solves classification and value forecasting
tasks.

Evaluation function is a one-criterion func-
tion.

Evaluation function is a two-criterion
function.

Criteria in the evaluation function is the
minimum number of bits needed to encode
the classification of all positive bindings of
the rule.

The first evaluation criterion is a condi-
tional probability of the rule.

The second evaluation criterion is the sta-
tistical significance of increasing the first
criterion if a new literal is added.

Evaluation function does not indicate a
prediction power of the rule.

Evaluation function indicates a prediction
power of the rule (probabilistic estimates).

May lose the best rules. Search is not com-
plete. Speeds up search by restricting search

The search mechanism does not lose the
best rules. The best rules are defined in

terms of MMDR’s evaluation criterion--
max of conditional probability.

(deletes all covered positive examples from
further search after finding a rule). Best
rules are defined in terms of FOIL’s
evaluation function.

4.9. Numerical relational data mining

Rapid growth of databases is accompanied by growing variety of types
of these data. Relational data mining has unique capabilities for discovering
a wide range of human-readable, understandable regularities in databases
with various data types. However, the use of symbolic relational data for
numerical forecast and discovery regularities in numerical data requires the
solution of two problems.

Problem 1 is the development of a mechanism for transformation be-
tween numerical and relational data presentations. In particular, numeri-
cal stock market time series should be transformed into symbolic predicate
form for discovering relational regularities.

Problem 2 is the discovery of rules computationally tractable in a rela-
tional form.

Representative measurement theory (RMT) is a powerful mechanism
for approaching both problems. Below we review RMT theory from this
viewpoint. RMP was originated by P. Suppes and other scientists at Stanford
University [Scott, Suppes, 1958; Suppes, Zines, 1963]. For more than three
decades, this theory produced many important results summarized in
[Krantz at el., 1971, 1981, 1990, Narens, 1985; Pfanzagl, 1968]. Some re-
lated to data mining are presented below. RMT was motivated by the inten-
tion to formalize measurement in psychology to a level comparable with
physics. Further study has shown that the measurement in physics itself
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should be formalized. Finally a formal concept of measurement scale was
developed. This concept expresses what we call a data type in data mining.
Connections between learning methods and the measurement theory were
established in the 70s [Samokhvalov, 1973; Vityaev 1976; Zagoruiko, 1979;
Kovalerchuk, 1973; Lbov et al, 1973; Vityaev, 1983]. First of all, RMT
yields the result that

any numerical type of data can be transformed into a relational form
with complete preservation of the relevant properties of a numeric data

fype.

It means that all regularities that can be discovered with numeric data pres-
entation also can be discovered using relational data presentation. Many
theorems [Krantz, et al, 1971, 1981, 1990; Kovalerchuk, 1975] support this
property mathematically. These theorems are called homomorphism theo-
rems, because they match (set homomorphism) numerical properties and
predicates. Actually, this is a theoretical basis of logical data presentations
without loosing empirical information and without generating meaningless
predicates and numerical relations. Moreover, RMT changes the paradigm
of data types. What is the primary numerical or relational data form? RMT
argues that a numerical presentation is a secondary one. It is a derivative
presentation of an empirical relational data type. The theorems mentioned
support this idea.

The next critical result from measurement theory for learning algorithms
is that the ordering relation is the most important relation for this transfor-
mation. Most practical regularities can be written in this form and dis-
covered using an ordering relation. This relation is a central relation in
transformation between numerical and relational data presentation.

The third idea prompted by RMT is that the hierarchy of data types de-
veloped in RMT can help to speed up the search for regularities. The
search begins with testing rules based on properties of weaker scales and
finishes with properties of stronger scales as defined in RMT. The number
of search computations for weaker scales is smaller than for stronger scales.
This idea is actually implemented in MMDR method (Section 4.8). MMDR
begins by discovering regularities with monadic (unary) predicates; e.g., X is
larger then constant 5, x>5 and then discovers regularities with ordering re-
lation x>y with two variables. In other words, MMDR discovers regularities
similar to decision-tree type regularities and then MMDR discovers regu-
larities based on ordering relations which are more complex first order logic
relations.

Another way to speed up the search for regularities is to reduce the
space of hypotheses. Measurement theory prompts us to search in a smaller
space of hypotheses. The reason is that there is no need to assume any par-
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ticular class of numerical functions to select a forecasting function in this
class. In contrast, numerical interpolation approaches assume a class of nu-
merical functions. Neural networks assume this, defining the network ar-
chitecture, activation functions, and other components. In contrast relational
data mining tests a property of monotonicity just for one predicate instead of
thousands different monotone numerical functions. We actually have used
this advantage in [Kovalerchuk, Vityaev, Ruiz, 1996,1997]. RMT has sev-
eral theorems, which match classes of numeric functions with relations.

The next benefit from RMT is that the theory prompts us to aveid incor-
rect data preprocessing which may violate data type properties. This is an
especially sensitive issue if preprocessing involves combinations of several
features. For instance, results of case-based reasoning are very sensitive to
preprocessing. Case-based reasoning methods like k-neighbors compute the
nearest k objects and assign target value to the current object according to
target values of these k-neighbors. Usually a discovered regularity is
changed significantly if an uncoordinated preprocessing of attributes is ap-
plied. In this way, patterns can be corrupted. In particular, measurement the-
ory can help to select appropriate preprocessing mechanisms for stock mar-
ket data and a better preprocessing mechanism speeds up the search for
regularities.

The discussion above shows that there should be two steps in the trans-
formation of numerical data into relational form:

— extracting, generating, and discovering essential predicates (relations),
and

— matching these essential predicates with numerical data.

Sometimes this is straightforward. Sometimes this is a much more complex
task, especially taking into account that computational complexity of the
problem is growing exponentially with the number of new predicates. Rela-
tional data mining can be viewed also as a tool for discovering predicates,
which will be used for solving a target problem by some other methods. In
this way, the whole data mining area can be considered as a predicate dis-
covery technology.

Several studies have shown the actual success of discovery of under-
standable regularities in databases significantly depends on use of data type
information. Date type information is the first source to get predicates for
relational data presentation (see Section 4.10).

A formal mechanism for describing data types is well developed in
Object-Oriented Programming (OOP) and is implemented in all modern
programming languages. An abstract data type in C++ includes private ele-
ments and member functions. These functions describe appropriate opera-
tions with elements and relations between elements. However, OOP does
not help much in generating these operations and relations themselves. The
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OOQP’s intent is to provide a tool for describing already generated abstract
data types.

In contrast, RMT is intended for generating operations and predicates
as a description of a data type. This RMT mechanism is called an empirical
axiomatic theory. A variety of data types as matrices of comparisons of
pairs, and multiple comparisons, attribute-based matrices, matrices of or-
dered data, and matrices of closeness can be represented in this way (see
below). Then the relational representation of data and data types are used for
discovering understandable regularities. We argue that current learning
methods utilize only part of data type information actually presented in data.
They either lose a part of data type information or add some non-
interpretable information.

The language of empirical axiomatic theories is an adequate lossless
language to reach this goal. There is an important difference between lan-
guage of empirical axiomatic theories and first-order logic language. The
first-order logic language does not indicate anything about real world enti-
ties. Meanwhile the language of empirical axiomatic theories uses first order
logic language as a mathematical mechanism, but it also incorporates addi-
tional concepts to meet the strong requirement of empirical interpretation of
relations and operations.

4.10. Data types

4.10.1. Problem of data types

The design of a particular data mining system implies the selection of the
set of data types supported by that system. In Object-Oriented Programming
(OOP), this is a part of the software design. Data types are declared in the
process of software development. If data types of a particular learning
problem are out of the range of the data mining system, users have two op-
tions: to redesign a system or to corrupt types of input training data for the
system. The first option often does not exist at all, but the second produces
an inappropriate result.

There are two solutions for this problem. The first is to develop data type
conversion mechanisms which may work correctly within a data mining
tool with a limited number of data types. For example, if input data are of a
cyclical data type [Krantz et al, 1970, 1981, 1990; Kovalerchuk, 1973] and
only linear data types are supported by the DM tool, one may develop a
coding of the cyclical data such that a linear mechanism will process the
data correctly.
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Another solution would be to develop universal DM tools to handle any
data type. In this case, member functions of a data type should be input in-
formation along with the data (MMDR implements this approach). This
problem is more general than the problem of a specific DM tool. Let a rela-
tive difference for the stock price be

A(t)=[(StockPrice(t) -StockPrice(t-1)]/StockPrice(t)

a “float” data type. This is correct for a computer memory allocation, but it
does not help to decide if all operations with float numbers are applicable
for A(t). For instance, what does it mean to add one relative difference A(x)
to another A(y)? There is no empirical procedure matching this sum opera-
tion. However, the comparison operation makes sense, €.g.,

A(x) <A(y)

means faster growth of stock price on date y than on date x. This relation
also helps interpret a relation “A (w) between A(x) and A(w)” as

A(x)< A(W) and A(w) <A(y) or A(y)< A(W) and A(W) <A(x)

Both of these relations are already interpreted empirically.

Therefore, A values can be compared, but one probably should avoid an
addition operation (+) if the goal is to produce an interpretable learned rule.
If one decides to ignore these observations and applies operations formally
proper for float numbers in programming languages, then a learned rule will
be difficult to interpret. As was already mentioned, these difficulties arose
from the uncertainty of the set of interpretable operations and predicates for
these data, i.e., uncertainty of empirical contents of data. The precise defi-
nition of empirical content of data will be given in terms of the empirical
axiomatic theory below.

Relational data types

A data type is relational if it is described in terms of the set of relations
(predicates). Some basic relational data types include:
— Equivalence data type,
— Tolerance data type,
— Partial ordering data type,
— Weak ordering data type,
— Strong ordering data type,
— Semi-ordering data type,
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— Interval ordering data type,
— Tree data type.
Next, we define these data types.

An equivalence data type is based on an equivalence relation E:

for any a,b,c €A,

1. E(a,a)=1 (true),

2. E(a,b) & E(b,a), and
3. E(a,b)&E(b,c) = E(a,c).

Further, we will often omit the predicate truth value assuming that P(x,y)
1s the same as P(x,y)=1.

The pair <A,E> is called an equivalence data type, where A is a set of
possible values of an attribute and E is an equivalence relation. An equiva-
lence relation partitions set A. This data type is called a nominal scale in
representative measurement theory. An equivalence data type can be pre-
sented as a class in programming languages like C++ with a Boolean mem-
ber function E(x,y).

A tolerance data type is based on a tolerance relation L:
for any a, b €A,
1. L(a,a)=1, and
2.1(a,b) < L(b,a).

A tolerance relation L is weaker than an equivalence relation E. Intervals
satisfy the tolerance relation but not the equivalence relation.

Example. Let L(a,b) <> Ja-b|<1. If a=0, b=0.5 and ¢ =1.5 then L(a,b)=1,
but L(a,c)=0 (false), because |a-c}=1.5.

A partial ordering data type is based on a partial ordering relation P:

for any a,b,c €A,
1. P(a,a)=1,
2. P(a,b)&P(b,c) = P(a,c).

This relation is also called a quasi-ordering relation. There is no nu-
meric coding (representation) for elements of A completely consistent with
relation P, i.e., there is not a numeric relation equivalent to P. The formal
concepts of consistency and equivalency will be discussed in the next sec-
tion.

A weak ordering data type is based on a weak ordering relation P:
for any a,b,c € A,
1. P(a,b)vP(b,a),
2. P(a,b)&P(b,c) = P(a,c).
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The difference between partial ordering and weak ordering is illustrated
by noting that any a and b can be compared by a weak ordering, but in par-
tial ordering some a and b may not be comparable.

A strong ordering data type is based on a strong ordering relation P:

for any a,b,c € A,

1. P(a,a)=0,

2. P(a,b)vP(b,a), and

3. P(a,b)&P(b,c) = P(a,c).

The difference between strong ordering and weak ordering can be illus-
trated with two relations: “2” and “>”. For instance, a2a is true, but a>a is
false, and P(a,a)=0. It is proved in [Pfanzagl, 1971] that for strong and weak
ordering data types <A;P>, A can be coded by numbers with preservation of
properties 1-3 if A is countable.

A semi-ordering data type is based on a semi-ordering relation P:
for any a,b,c € A,

P(a,b)&P(b,c) = Vd e A such that P(a,d)vP(d,c).

This relation P can be illustrated with intervals. Let a function U be a
coding function each element of A as a real number, U: A — Re. Then
P(a,b) is defined as P(a,b) < U(a) + 1 <U(b).

The function U is called a numeric representation of A. It is not neces-
sary that a numeric representation exist for any data type. For instance, a
partial ordering relation does not have a numeric representation. At first
glance this seems strange, because we always can code elements of A with
numbers. However, there is no numerical coding consistent with a partial
ordering relation P. Consider an a and b which are not comparable, i.e.,
P(a,b)=0, but a and b are coded by numbers. Any numbers are obviously
comparable, e.g., 4<5.

Therefore, a non-interpretable property is brought to A by numerical
coding of its elements. However, if numerical comparison is not used for
constructing a learned rule, any one-to-one numerical coding can be used. If
a numerical order is used in learning a rule, then this rule can be non-
interpretable.

An interval ordering data type is based on an interval-ordering relation
P: for any a,b,c,d € A,
1.P(a,a),
2. P(a,b)&P(c,d) = (P(a,d)vP(c,b)).

It is proved in [Fishbern, 1970] that a numeric representation for <A,P>
exists completely consistent with properties 1 and 2. There are functions U
and S, U, S: A —» Re", such that forany a,b € A,
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P(a,b) < U(a) + S(a) < U(b).

A tree-type data type is based on a tree-type relation P:

for any a,b,c,d € A,
1. P(a,a)=0,
2. P(a,b)&P(a,c) = P(b,c)vP(c,b).

There is no numerical representation completely consistent with these
properties.

If some ordering relation is interpretable in terms of domain background
knowledge, then it can be included in background knowledge and used for
discovering rules in RDM directly. Partial ordering and tree-type relations
often appear in hierarchical classifications and in decision trees. In financial
applications, usually the data are presented as numeric attributes, but often
relations are not presented explicitly. More precisely, these attributes are
coded with numbers, but applicability of number relations and operations
must be confirmed. Let us illustrate use of relations defined in this section
for identifying data type for stock relative difference A(x). Let PS(x,y) be
defined as follows

PS(x,y)=> A(x)> A(y)

and a financial expert agrees that PS(x,y) makes sense. Now we can identify
its type. This is a strong ordering relation. Therefore, we can identify the A
attribute as an attribute of the strong relational data type. Similarly we can
define PW(x,y))¢> A(x)2 A(y) and identify A as an attribute of the weak re-
lational data type. One can continue identify A as belonging to other data
types listed in this section as well. One may wish to produce a predicate
PM(xy.2),

PM(x,y,z) < A(x) + A(y)= A(2).

There is little financial sense in this predicate, because the operation (+) is
not financially interpreted for A. The above considerations show that there
are relations without a numeric representation. Therefore, the relational
data representation in the first order logic is more general than a nu-
meric representation. What is the traditional way of processing binary re-
lations? Traditionally numerical methods use distance functions (from a
metric space) between matrices of relations (binary relations). These dis-
tance functions are defined axiomatically or using some statistical assump-
tions associated with coefficients of Stuart, Yule and Kendall, information
gain measures, etc. Obviously, these assumptions restrict the areas of appli-
cability for these methods.
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4.10.2. Numerical data type

In previous sections, the term numerical data was used without formal
definition. Actually, there are several different numerical data types. The
strongest one is called absolute data type (absolute scale). Having this data
type in background knowledge B of a learning problem, we can use most of
the known numerical relations and operations for discovering a rule. The
weakest numerical data type is nominal data type (nominal scale). This
data type is the same as the equivalence data type defined in Section 4.9.1.
It allows us only one interpretable relation Q(x,y). In other words, it is
known ifx and y are equal. In between there is a spectrum of data types al-
lowing one to compare values with ordering relations, to add, multiply, di-
vide values and so on. Stevens [1946] suggested classification of these data
types. They are presented in Table 4.26. The basis of this classification is a
transformation group. The strongest absolute data type does not permit to
transform data at all, and the weakest nominal data type permits any one-to-
one transformation. This data type permits one-to-one coding of data entities
by numbers. Intermediate data types permit different transformations such as
positive monotone, linear and others (see Table 4.26) [Krantz, et al, 1990].

Table 4.26. Numerical data types (Stevens’ classification of scale types)

Transformation Transformation Group Data type (scale)
X = f(x), F :Re — (onto)Re, 1—1 transformation grou Nominal

X = f(x), F :Re — (onto)Re homeomorphism group Order
X—=omx+sr>0 Positive affine group Interval
X->tx, tr>0 | Powergroup Log-interval
X—ox+ts Translation group Difference
X->txt>0 Similarity group Ratio

X—ox Identity group Absolute

4.10.3. Representative measurement theory

The main definitions from representative measurement theory are re-
viewed in this section. A relational structure A consists of a set A and re-
lations Sy,...,S, defined on A

A= <A,S|,. 5 ,Sn>
Each relation §; is a Boolean function (predicate) with n; arguments from
A. The relational structure A = <A,Sy,...,S> is considered along with a re-

lational structure of the same type

R=<R,T,,...,T;>.
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Usually the set R is a subset of Re™, m 2 1, where Re™ is a set of m-
tuples of real numbers and each relation T; has the same n; as the corre-
sponding relation S;. T; and §; are called a k-ary relation on R. Theoretically,
it is not a formal requirement that R be numerical.

Next, the relational system A is interpreted as an empirical real-world
system and R is interpreted as a numerical system designed as a numerical
representation of A. To formalize the idea of numeric representation, we
define a homomorphism ¢ as a mapping from A to R.

A mapping @: A= R is called a homomorphism if for all i(i = 1,...,n),

(an...ap) € Si o (o)., o(ay)) € Ti.

In other notation,

Si(a,....a) & Ti(@(a1),..., P(axg)).

Let ®(A,R) be the set of all homomorphisms for A and R. It is possible
that ®(A,R) is empty or contains a variety of representations. Several theo-
rems are proved in RMT about the contents of ®(A,R). These theorems in-
volve: (1) whether ®(A,R) is empty, and (2) the size of ®(A,R). The first
theorems are called representation theorems. The second theorems are
called uniqueness theorems.

Using the set of homomorphisms ®(A,R) we can define the notion of
permissible transformations and the data type (scale types). The most natural
concept of permissible transformations is a mapping of the numerical set R
into itself, which should bring a “good” representation. More precisely, ¥ is
permissible for ®(A,R) if y maps R into itself, and for every @in ®(A,R),
o is also in ®(A,R). For instance, the permissible transformations could be
transformations, X —=» rx or monotone transformations x — y(x).

4.10.4. Critical analysis of data types in ABL

The empirical status of data types for different learning tasks and their
treatment by known numerical data mining methods such as regression, cor-
relation, covariance analysis, and analysis of variance applications are ex-
amined in this section. In the previous section, it was required that a rela-
tional system A representing a data type should be interpreted as an empiri-
cal real-world system, i.e., A should be included in the domain background
knowledge of a learning task. Numerical methods such as regression, corre-
lation, covariance analysis and analysis of variance assume that any numeri-
cal standard mathematical operations (+,-,*, / and so on) can be used despite
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their possible non-interpretability. In this way, a non-interpretable learned
rule can be obtained as well. Let us consider this situation in more detail for
six different cases.

Case 1. Physical data types in physical problems. Multidimensional
data contain only physical quantities and the learning task itself belongs to
physics, where data types and measurement procedures are well developed.
In this case, the measurement theory [Krantz et al, 1970, 1981, 1990] pro-
vides formalized empirical systems and the groups of permissible transfor-
mations of all quantities. The use of the mentioned methods is most appro-
priate. However, the following problems remain:

a) To establish the invariance of the data mining methods within permis-
sible transformations of quantities of the data is needed. The invariance of
the methods is a necessary condition of their meaningfulness. The invari-
ance means that the resulting learned rule should not depend on choosing
particular numerical representations and measurement units. As is shown in
[Kuzmin et al., 1977; Orlov, 1979, 1977; Terekhina,1973; Tyrin et al., 1981;
Roberts et al., 1976], the proof of the invariance of the methods is a rather
difficult task and most methods are not invariant for permissible transfor-
mations.

b) Nevertheless, the invariance is not a sufficient condition for a rule
to be meaningful. Even if a method is invariant for the permissible trans-
formations of a data type, this does not mean that the results are interpret-
able in terms of empirical systems [Luce et al, 1971, 1981, 1990; Pfanzagl J.
1971; Roberts ES. et al, 1976]. However, for many practical tasks this
strong interpretability is needed to obtain valuable knowledge.

c¢) The methods, which are invariant, satisfy a weaker condition of inter-
pretability. For instance, we may be able to interpret relation “=* if we dis-
cover that y = f{xy,...,Xs ) for data D, but this does not mean that we will
also be able to interpret the function f itself. The function f can use non-
interpretable relations and operations, but be invariant for permissible trans-
formations. In other words, it is possible that we can not interpret function f,
but we are able to interpret “=" for values of this function. For example, in
“black box™ approaches such as neural networks, we can not interpret a par-
ticular network f, but we can interpret that NN produced the same correct
pattern for two different inputs.

Case 2. Physical data types for non-physical problems. Multidimen-
sional data contain physical quantities, but the task is not from the physical
area. The task may belong to finance, geology, medicine, and other areas. In
this case, actual data types are not known even when they represent physical
quantities. If the quantity is physical, then we know the empirical system
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from the measurement theory. Nevertheless, the relations of that empirical
system must be physically interpretable. If the task is physical also, then
these relations are interpretable in the physics system of notions.

If the task is not physical, we need to check if relations from the empiri-
cal system are interpretable in that area. It may turn out that some of the re-
lations can not be interpreted in that area. Then these relations need to be
removed from the empirical system.

For example, for many physical quantities there is an empirically inter-
pretable operation e, matched to the formal numeric additive operation +
and its properties. However, the use of the same attribute in finance, medi-
cine, and other fields can change its data type. For instance, there is no
known medical procedure on a patient that gives us temperature ts from two
patient’s temperatures t; and t,, t;=t;et,. Therefore, the operation ¢ doesn’t
have interpretation in medicine.

On the other hand, the relation “<” makes sense in both areas. Everyone
knows the meaning of increasing temperature. It means that temperature
data type in physics differs from temperature data type in medicine and we
do not know exactly what the medical temperature data type (empirical sys-
tem of temperature) is. The group of permissible transformations of tem-
perature is not defined in medicine. Hence, we have no necessary criterion
of meaningfulness of discovered knowledge. The situation in finance is
similar. “Overheating of the market” is not measured by the physical tem-
perature data type.

This consideration shows the need for discovering and testing a data
type for a specific domain. MMDR method (Section 4.8) is able to do this.
After the data type is discovered it can be used by variety of methods for
rule discovery. What can data mining methods produce for the Case 2? Po-
tentially the target value can be predicted correctly, but without interpreta-
tion of the discovered decision rule. Thus, the prediction task can be
solved in Case 2, but a regularity-discovering task will not be solved. The
interpretability of the results is critical for such tasks. We cannot use non-
interpretable rules except for predictions. These rules can not be added to
background domain knowledge.

Case 3: Non-physical data types for non-physical tasks. For non-
physical quantities, data types are practically unknown. The situation is
similar to the case when we use physical quantities in non-physical areas,
because the groups of permissible transformations are unknown. Hence, we
come to the same conclusion as in the previous case.

The example for this is shown below for financial applications. Let us try
to identify the data type of the directional indicator DI(t) for stock S(t) for
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date ¢ used in [Von Altrock, 1997] and described in Chapter 7. Here SMax
SMin and SClose are max, min, and close values of the stock, respectively.

DI()=DM@)/TR(1),

where
Da()= | SM@) = SClose(t- 1), if SMax(t) > SClose(t-1)
70, if SMax(t) < SClose(t-1)
and

TR(t) = max(SMax(t) - SMin(r)|,|SMax(t) - SClose(t - 1),
ISMin(¢) - SClose(z - 1)|)

DM(t) produces today’s highest stock price, SMax(t) minus the closing price
of last trade day, SClose(t-1). The value is zero if the closing price of the last
trade day is greater than today’s highest price. Therefore, this formula is
equal to zero if the stock does not grow, otherwise it shows the value of the
growth.

The formula for TR(t) (true range of stock) is computed as the largest of
(a) the distance between today’s high and today’s low,

(b) the distance between today’s high and yesterday’s close, or
(c) the distance between today’s low and yesterday’s close.

Finally Directional Indicator, DI, shows relative last stock growth. Inter-
pretable operations with DI are not clear. For instance, what does the sum
mean for two DIs? However, comparison of different DIs makes sense. If
DI(v)<DI(w), then v has less evident growth than w from yesterday’s close
to today’s current price. The simple example in Table 4.27 shows this. Here
DI(v)=1/2 and DI(w)=1.

Table 4.27. Example of positive stock direction indicator DI
Date | Price | Price | Price | Max(t)- Max(t)- Min(t)- DM | TR | D

Max | Min [ Close | Close(t-1) | Min(t) Close(t-1) I
v-1 36 31 32
\' 33 30 30 33-32=1 1 30-32=-2 |1 2 Va

W 35 30 33 35-30=5 35-30=5 | 30-30=0 5 5 1
W+1 | 35 30 34 35-30=5 35-30=5 | 30-31=0 5 5 I

This example shows that a hypothesis constructed using relation
DI(v)<DI(w), e.g.

IF DI(v)<DI(w) THEN PriceClose(v)<PriceClose(w)
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is much better interpreted and user-understood than a hypothesis such as
IF (3*DI(v)+4*DI(w))>5 THEN PriceClose(v)<PriceClose(w).

Case 4. Nominal discrete data types (multidimensional data containing
only discrete nominal data). In this case, all data are interpretable in empiri-
cal systems because there is no difference between the numerical and
empirical systems. All numbers are only names, and names can be easily
represented as predicates with one variable. The group of permissible trans-
formations for nominal data type consists of all possible one-to-one trans-
formations without restriction.

All methods working with these predicates are invariant relative to this
group of permissible transformations. They also satisfy a stronger condition
of meaningfulness of the methods — the interpretability in terms of empirical
systems and the system of notions of domain knowledge.

Case 5. Non-quantitative and non-discrete data types. Multidimen-
sional data contain no quantities and discrete variables, but do contain ranks,
orders and other nonstandard data types. This case is similar to the third
case. The only difference is that such data usually are made discrete using
various calibrations without losing useful information.

Case 6. Mix of data types (multidimensional data containing mixture of
various data). All mentioned difficulties arise in this case. There are several
methods, which can work with some specific types of mixed data [Lbov et
al, 1973; Manohin, 1976; Zagoruiko, Elkina, 1976, Mirkin, 1976].

To be able to work with all sorts of data type mixes, a new approach is
needed. Relational data mining implements this approach using relational
presentation of data types and the concept of empirical axiomatic theories. In
particular, the MMDR method at first describes data types in relational form,
and then discovers regularities using these predicates.

4.11. Empirical axiomatic theories: empirical contents of
data
4.11.1. Definitions.

The concept of empirical axiomatic theory is a formal representation of
the “empirical content of data”. This concept originates from the logic of
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empirical theories [Pzelecki, 1969; Samokhvalov, 1973; Zagoruiko, Samok-
hvalov, et al, 1978] and from the critical analysis of representative meas-
urement theory [Krantz et al, 1971, 1989, 1990].

Definition. Empirical axiomatic theory is a set M of four components:

M=<0bs",V, W, S$> where

Obs" is a measurement procedure,

V = {Py,...,Pu} is a set of empirical predicates (we assume that the
equality “=" belongs to V),

W = {Q,...,Qnz} is a set of theoretical predicates, where the predicates
from W are idealizations of the empirical predicates from V, and

S is a set of axioms in the VUW.
The set of axioms S consists of axioms 8¥, S¥ for V and W and for mapping
rules SYY¥ [Pzelecki, (1969)]. These rules may be derived from the domain
knowledge of measurement procedure Obs¥ and predicates from V. If there
is no mapping rule between V and W, then actually there is theoretical
knowledge and sets W, S¥ U SY“¥ are empty. In this case, empirical axio-
matic theory M consists of only three components:

M=<O0bs", V, S¥>.

Measurement procedure Obs", interprets the empirical predicates from V.
If this procedure is applied to a set of objects A = {ay,...,an} then a formal
protocol pr¥ of observations is produced. This protocol includes symbols for
objects aj,...,am, symbols of predicates (from V), and possrbly some other
symbols. It is assumed that measurement procedure Obs” can be applied to
any set of objects A. It can be done by introducing a third truth value (not
defmed) for the predrcates from V. Next, for simplicity of consideration, it
is assumed that Obs" produces on ‘}1 one protocol of observations for a
given A. Hence, the procedure Obs defines a mapping from the set of ob-
jects A toprotocols: Obs“(A) = pr".

The set of all formulas in the set V, which is true for all protocols of ob-
servation pr¥ =Obs Y(A) is called empirical dependency.

We say that an empirical axiomatic theory has an empirical interpreta-
tion, if all parts of that theory are interpretable in the domain theory (back-
ground knowledge): measurement procedure 0bs", protocol of observations
pr’, predicates from V and W, and axioms S.

The concept of empirical system can be defined in terms of empirical
axiomatic system as a non-reducible model [Pfanzagl, 1971] of the set of
axioms S¥. This means that the model does not merge objects, which are
different for predicates from W.
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4.11.2. Representation of data types in empirical axiomatic theories

The first step of the analysis of empirical content of data consists of the
representation of data in empirical axiomatic theories. Below are considered
several known data types such as comparisons, binary matrices, matrices of
orderings, matrices of proximity and attribute-based matrix. Moreover, em-
pirical axiomatic theories are the most general representation of various data
types. They represent well known data types, mixture of various data types,
and data types that have no numerical representation at all.

Next, we review existing methods for processing these data types. This
includes determination of assumptions of existing methods. Finally, we
show that relational methods such as MMDR do not require restrictive as-
sumptions about data types. Any data type can be accommodated and even
discovered in training data. It is known that humans answer more precisely
for qualitative and comparative questions than for quantitative questions.
Therefore, the representation of these data types in axiomatic empirical
theories is convenient.

Attribute-based matrix (table). Data D can be represented as an attrib-
ute-based matrix (xg), i = 1,...,m; j = 1,...,n; where x; is the numerical value
ofj attribute on i-th object. Attributes may be qualitative and quantitative.
The fact that numerical values of attributes exist means that there are n
measurement procedures, which produce them. Let us denote these proce-
dures as x;(a), j = 1,...,n, where a is an empirical entity. Then, xij = x(a;).

Attribute-value methods such as neural networks deal with this type of
data. These methods are limited by the assumption that data types are
stronger than interval and log-interval data types, which is not always true.
For definitions of these data types, see Section 4.9.2.

Let us determine art empirical axiomatic system for attribute-based ma-
trices. At first, a set of empirical predicates V; for each attribute x; needs to
be defined. There are two cases:

1. The measurement procedure x; is well known and an empirical system
is known from measurement theory. Therefore, the set of all empirical
predicates contains predicates given in V; i=l...,n.

2. An empirical system of the measurement procedure X; is not com-
pletely defined. In this case, we have a measurement procedure, but we do
not have an empirical system. The measurement procedure in the second
case is called a measurer. The examples of measurers are psychological
tests, stock market indicators, questionnaires, and physical measurers used
in non-physical areas.

Let us define a set of empirical predicates Vifor measurer procedure x;.
For any numerical relation R(yy,...,yx) in Re* (Re - the set of all real num-
bers), we can define the following empirical relation on A¥,
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PR(ay,...,a%) < R(xi(a1),... . xi(8x)).

The measurer x; obviously has an empirical interpretation, but relation P®
may not. We need to find such relations R that have empirical interpreta-
tions, i.e., relation R(xy(ai),..., Xi(ax)) is interpretable in the terms of domain
theory.

Suppose that {R,,...,R, } is a set of the most common numerical rela-
tions and some (relations PRY,,...,PR;) have an empirical interpretation. This
set of relations is not empty, because at least the relation P~ (equivalence)
has an empirical interpretation:

PTi(a,82) & xi(a)) = x,(ay).

In measurement theory, there are many sets of axioms based on just or-
dering and equivalence relations. Nevertheless, these sets of axioms estab-
lish strong data types. A strong data type is a result of interaction of the
quantities with individual weak data types such as ordering and equiva-
lence. For instance, having one weak order relation (for attribute y) and n
equivalence relations

{Sy’=x| gevey =x, w-’=x, }

for attributes Xi,...,Xs, We can construct a complex relation between y and
XJ,...,Xa given by

G(Y,X15...,Xn) & Y = f(Xy,...,X0),

where f(Xy,...,Xa) is a polynomial [Krantz et al, 1971].

This is a very strong result. To construct a polynomial we need the sum
operation, but this operation is not defined for xy,...,x,. However, relation G
is equivalent to polynomial fifa certain set of axioms expressed in terms of
order relation (<y) presented above for y, and equality relations (=) are true
for x;.

This fundamental result serves as a critical justification for using order-
ing relations as a base for generating relational hypotheses in financial
applications (Chapter 5). Ordering relations usually are empirically inter-
pretable in finance.

Multivariate and pair comparisons [Torgerson, 1952, 1958, Shmerling
D.S. 1978]. Consider set of objects A = {ay,...,am} and set of all tuples Ak of
k objects from A. A group of n experts are asked to order objects in all tu-
ples <ay,ay,...,ax > from A¥ in accordance with some preference relation.
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Let a,-“q be an object 1 from tuple <ay,a;,...,8c >, where t is an entity to be
evaluated, s is an expert and q is a preference rank given by an expert s to
the entity ¢, i = 1,....m; s = 1,...,n; t = 1,...,Cu% q = 1,....k. The set of all
ordered tuples is denoted by

R = {<ay"1,812"3,.. ., 8% 'k >}

The typical goal of pair and multivariate comparison methods is to order all
tuples. Known methods are based on some a priory assumptions [Torgerson,
1952, 1958; Shmerling D.S. 1978] which determine the areas of applicabil-
ity.

Let us define for every expert s the preference relation

Py(ai"i,82%2 ) < 11 <12

Also, define the two equivalence relations ~ , ~ and equivalence relation =

by

8™~ o il =i2,

"y ~ 4y & tI'=12, and

;™ = 2" < objects a;"™,, 8™ are the same.
Therefore, we obtain a set of empirical predicates
V= {=9 ~s 'ty Pb---,Pn}

and, thus, a data type represented with the set of empirical predicates V.
Matrix representation of binary relations. A binary relation P(a,b)
may be defined on the set of objects A = {ay,...,am} by the matrix (ey), 1j =
l,...,m where e = 1(0) means that relation P(a;,a;) 1s true (false). Using
such matrices, any binary relation on the set A can be defined. This repre-
sentation of binary relations is widely used [Terehina, 1973; Tyrin et al
1977,1979, 1981; Mirkin 1976,1980; Drobishev 1980; Kupershtoh et al,
1976]. The most common binary relations are equivalence, order, quasi-
order, partial order (see Section 4.9.1), and lexicographical orders.
Matrices of orderings. Let (rg), i=1,...,m;j=1,...,n, where ry- rank of
i-th object on j-th attribute, be a matrix of orderings. Any matrix can be ei-
ther the matrix of orderings of m objects by n experts or the matrix of n dif-
ferent orderings on m objects. Methods of multidimensional scaling or
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ranking [Tyrin et al, 1977,1979, 1981; Kamenskii, 1977] consider these ma-
trices.
Let us define relation P; for an attribute j:

Pj(ai1,ai2) < riyj <rygj,

where ajj,a;; are objects with numbers il, 12 from A = {a,...,an}.

In this way we obtain the set of empirical predicates V = {Py,...,P,}. In
these terms, protocol pr¥ of observations of the predicates from V on the set
of objects A is the relational structure

prV =<A;P,,...,.Pp>.
Matrices of closeness. A matrix of closeness for set of objects

A = {alv' 'sam}

is the matrix (ry), iy = 1,...,m, where ryis a numerical estimate of closeness
(similarity or difference) of objects i and j from A by an expert using an
ordering scale.

These matrices are processed by multidimensional scaling methods
[Holman, 1978, Satarov, Kamenskii, 1977, Tyrin et al, 1979, 1981]. They
represent objects from set A as points in some metric space (Euclidean or
Riemannian). This space is a space of minimal dimension which preserves
original distances {t;} between objects in the original space as much as pos-
sible. These methods have general limitations. There is no criterion for
matching a data matrix and a multidimensional scaling method, and some
matrices of closeness can not be embedded in a metric space. Thus, we can
consider these embedded data as an attribute-based matrix. Let us repre-
sent the matrix of closeness in relational terms of empirical axiomatic
theories.

Let P(ai1,8i2,2i3,8i4) < T2 < rizie. This relation is defined on entire set A.
Hence, the protocol pr¥ in the set of predicates V = {P} will be the rela-
tional system

prv =<A;V>,

In measurement theory such empirical systems are denoted by

M=<A"; <>, where A" c AxA, and < is a binary ordering relation defined
on A", Let us describe some results from measurement theory related to such
empirical systems.
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Scale of positive differences [Krantz et al 1971,p.147]. There exists a
mapping

$:A"'>Re, A%,
such that for every pair (a,b), (b,c), (c,d) from A",

a) (a,b) < (c,d) < d(a,b) < d(c,d), and
b) ¢(a.c) = ¢d(a,b) + d(b,c).

This scale means that for an empirical ordering relation for pairs of empiri-
cal objects, we can find a numerical function ¢ with an interpretable sum
operation (+) on its values. The difference between a and c can be obtained
as the sum of differences between (a, b) and (b,c). See property b).

The sum is interpretable because differences (a,c), (a,b) and (b,c) are in-
terpretable. It is important to mention that original differences (a,c), (b,c)
and (a,c) have no numeric values. We only know from the ordering relation
that, for instance, (a,b) < (c,d). if there are two pairs of stocks and an expert
expresses his/her opinion that

(Microsoft, Intel) < (Microsoft, Sun),

i.e., from his/her viewpoint behavior of the Microsoft stock is closer to be-
havior of the Intel stock than to behavior of the Sun stock. Figure 4.2 shows
actual data for these three companies for July 99 normalized by the max
stock prices for that month.
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Figure 4.2. Normalized stock data
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There is no numeric measure of closeness between stocks yet. It is con-
venient to introduce a numeric measure of closeness ¢ between stocks. We
may wish to introduce ¢ such that, for instance,

¢(Microsoft, Sun)=¢(Microsoft, Intel)+¢(Intel, Sun).

If we are able to find such measure of closeness ¢ consistent with the or-
dering relation (<) given by an expert, then we can use the sum operation (+)
in numeric data mining methods for discovering regularities.

This sum will be interpretable in contrast with other functions ¢, which
can be invented. An interpretable mapping ¢ is a homomorphism. For the
formal definition of homomorphism, see Section 4.9.3. We can also view
homomorphism ¢ as a way of transforming a numeric presentation to a
relational presentation for using relational data mining methods in discov-
ering regularities.

For a scale of positive differences, a mapping ¢ is unique within a posi-
tive numerical multiplier g, i.e., any other interpretable mapping ¢’ can be
obtained from ¢ by ¢’ = qd. This means that ¢ is measured in the ratio
scale.

Scale of algebraic differences [Krantz et all, 1971, p.151].
Let A" = AxA. There exists ahomomorphism
¢: A = Re such that for every a,b,c,d € A:

(a,b) < (¢,d) & (d(a) - $(b) < (d(c) - B(d)), for (a,b), (c,d) € A",
This representation is unique within the log-linear transformations (log-
interval scale).

Scale of equal finite mtervals [Krantz et all, 1971, p.168].
Let A" = AxA, A is finite set, A" # @. There exists a homomorph1sms
¢: A = N (N — natural numbers), such that for every a,b,c,d € A:

(2,0) S (c.d) < d(a) - B(b) < d(c) - B(d), for (a.b), (c.d) € A"
This representation is unique within the linear transformations (interval
scale). Similarly, other data types can be converted into the relational form
of axiomatic empirical systems.

4.11.3. Discovering empirical regularities as universal formulas

In this section, we consider the possibility of developing a rather general
method of rule discovery in first order languages. The most general ap-
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proach would operate with ail possible hypotheses in the first order lan-

guage. This is impractical for many reasons. We favor two other alternative

approaches:

-restricting the set of hypotheses by formulas with universal quantifiers
called universal formulas (see Section 4.4.3 for definitions) and

-probabilistic regularities described in Section 4.8 with the MMDR
method.

We consider only universal formulas for expressing empirical axioms as-
suming that these axioms do not contain existential quantifies and functions
(see Section 4.4.3 for definitions). Only empirical axioms can be tested on
real data. If empirical axioms are expressed with existential quantifiers, then
these quantifiers can be eliminated using Skolem functions [Mal’tsev,
1970]. Processing of other axioms is described in [Krantz, et al 1990].
Along with empirical axioms, measurement theory also uses technical
axioms and idealized axioms [Krantz et al 1990, p.251] to simplify numerical
representation of data.

At this point, we determine empirically interpretable properties of a
measurement procedure Obs”. These interpretable properties of Obs" give
us the criteria for discovering universal formulas. One of these properties is
inheritance of observations as defined below. It will be shown that the in-
heritance of observations is the necessary and sufficient condition for ex-
pressing empirical dependencies by universal formulas.

Let us specify two concepts measurement procedure Obs" and the pro-
tocol of observations pr'. The protocol of observations is a relational sys-
tem or model [Mal’tsev, 1970] pr = <A;V> = Obs’ (A), where A =
{ay,...,am} 1s a set of objects and V = {P,,...,Pa} is a set of empirical predl—
cates. We also assume the standard deﬁmtlon of truth for logical expresswns
on relational system pr¥ [Mal'tsev, 1970]. A protocol of observations pr’
can be viewed as data D. The set of all formulas in the set V which are true
on all protocols of observation pr’ = Obs"(A) is called a set of empirical
dependencies. Let us show that the inheritance of observational results is
the necessary and sufficient condition of expressing empirical dependencies
by universal formulas.

We use several formal concepts:

— anempirical axiomatic theory M =< Obs sV, W,S8> (section 4.10.1)

— asetofall f1n1te relational systems PR ={pr V1, where each relational
system pr¥= <A V> is a result of applylng measurement (observation)
procedure Obs” to a set of objects A, pr'=<A;V>=Obs"(A), and

- ang abstract class T of all finite relational systems of the type
pr¥ =<A;V>,

In these logical terms, our purpose is to find necessary and sufficient condi-

tions of axiomatizability the set PR in class T.
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The set PR is called a universal axiomatizable (UA) in class T, if there
exists a set of universal formulas W, which are true only on relational sys-
tems from T, which belong to PR. In that case, the set W will be a system of
axioms for our observation procedure Obs", producing the set PR.

Theorem 1 (Los’-Tarski) [Mal’tsev, 1970]. Class PR is UA class in
class T if and only if PR is locally close in class T.

The mathematical property of local closeness is difficult to interpret,
therefore, another condition of universal axiomatizability should be found.

Definition 1 [Mal’tsev, 1970]. Subclass PR is called inherited in class T
if any relational subsystem in class T of some relational system from PR
belongs to PR.

Proposition 1 [Mal’tsev, 1970]. For the classes of finite relational sys-
tems PR and T, the local closeness of class PR in class T follows from the
inheritance of class PR in class T.

Deﬁnltlon 2. The inheritance of observational procedure: for every
protocol pra’ = <A;V>=0bs" (A) € PR and any subset B < A the protocol
prp’ = <B;V> = Obs" (B) € PR is a subsystem of the protocol pra.

The empirical interpretation of this deflmtlon is that: the truth-values of
the relations from V in the protocol pra" depend only on the set of objects
Ob < A. Set Ob is the set where the relations are defined. For physical ex-
periments, this property is obviously fulfilled. It explains why most physical
laws are universally axiomatizable. Nevertheless, if we consider human re-
sponses for a set of stimuli Ob from A, we see that answers depend on the
remaining stimuli from A\Ob.

Theorem 2 [Vityaev,1983]. If observational procedure Obs" satisfies the
inheritance property, then empirical dependencies are universally axiomatiz-
able.
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Financial Applications of Relational Data Mining

Logic is a system whereby one may go wrong with confidence.
CharlesF. Kettering

5.1. Introduction

This chapter is devoted to discovering regularities in financial time series
combining mathematical logic and probability theory. Specifically the rela-
tional data mining method MMDR (Section 4.8) and the related "Discovery"
software system [Vityaev et al., 1992, 1993; Kovalerchuk, Vityaev, 1998]
are used. Discovered regularities were used to forecast the target variable,
representing the relative difference in percent between today's closing price
and the price five days ahead, along with next day’s forecast. Below we de-
scribe types of regularities found and analyzed, statistical characteristics of
these regularities on the training and test data, and the percentage of true and
false predictions on the test data. There are more than 130 discovered regu-
larities in 1985-1994 data. The best of these regularities indicates about 75
% correct forecasts in 1995-1996 test data. The target variable (a specific
stock data provided by the Journal of Computational Intelligence in Finance)
was predicted using separately SPS00C (S&P 500 trading day close) and the
target variable’s own history. Active trading strategy based on discovered
rules, outperformed buy-and-hold strategy and strategies based on several
other models in simulated trading for 1995-1998. A separate computational
experiment was conducted for forecasting SP500 for comparison with other
methods.

To the best of our knowledge, this is the first financial application of
relational data mining and, in particular, for the analysis of SPS00C and
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other stock market data. In Chapter 6, these results are compared with the

performance of other methods: ARIMA, FOIL, backpropagation neural net-

works, decision trees, linear adaptive methods, buy-and-hold and risk-free
investment.

Most of these methods excluding FOIL are attribute-based data mining
methods. As has been discussed, these methods are relatively simple, effi-
cient, and can handle noisy data. However, (1) the restricted form of the
background knowledge and (2) the lack of relations limit possibilities of
applying these methods in some domains. Relational Data Mining such as
ILP methods overcome these limitations, but currently have difficulty han-
dling numerical data and processing large data and predicate sets
[Bratko, Muggleton, 1995].

The relational method MMDR handles a wide range of numeric data, in
particular, the relative difference in percent between today's closing price
and the price five days ahead. The Standard and Poor’s 500 close (SP500C)
is also used as a direct target variable with some additional features:

— weekday (indication of a particular day of the week, i.e., Monday, Tues-
day, Wednesday, Thursday, Friday) for each value of studied variables,
and

— the first and second differences for variables (prices and SP500C and
DIIA indexes) for various weekdays, which are similar to first and sec-
ond derivatives.

All this information was transformed into a first order logic presentation

with probabilities on logical expressions, as described below.

Traditionally Inductive Logic Programming is used for classification
tasks, which includes:

— arepresentation of the positive and negative examples, and

— relevant background knowledge in the forms of predicates (logical re-
lations with variables).

Numerical prediction of values of financial time series is not a classifi-
cation task, therefore, it should be described differently in terms of predi-
cates. It involves development of a good representation of the entire time
series in predicate terms, together with relevant background knowledge
about this time series. Often relevant background knowledge covers the en-
tire time series. Therefore, generally we do not need to distinguish these two
components. However, we need to distinguish sets of hypotheses about the
regularities in the time series in predicate terms and a standard numerical
description of the time series. The second part may require some traditional
preprocessing. The first part is the most innovative in this study. It requires
inventing both predicates and hypotheses in terms of these predicates.



Financial Applications of Relational Data Mining 191

These predicates and hypotheses are developed for financial series and de-
scribed in this chapter (Sections 5.2 and 5.7).
In Section 5.2, all hypotheses are combinations of relations (predicates)

P(x,y)=True & (x)2 t(y),

where t(x) and t(y) are values of the time series, or their absolute or relative
differences for dates x and y. Thousands of these hypotheses are tested for
discovering “probabilistic laws” in computational experiments.

5.2. Transforming numeric data into relations

Variables. Two time series TR (training set) and CT (control/test set)
of the target variable are used to train and evaluate a forecasting algorithm,
where

TR={a, ..., a,}
is ten years of data (1985-1994, & =2528 trading days) and
CT={a,.., ay

is two years of data (1995-1996, ¢t =506 trading days).
Five sequential days are used as the main forecast unit (an object)

(0 2 3 4 5
a, =(a,,a,,q,,a,,a;),

where &} is j-th day of the five-day object a,, We also use another notation

at = (at » al+l ’ at+2 ’ at+3 s aH-A)
with the correspondence between notations
=al
a(l-l)+ Jr= al

for all five days of a, (j=1,...,5). Actually, index ¢ indicates the first day of
a five-day object. A Weekday(a,) function has five values: 1,2,34.5, where
Weekday(a)=1 indicates that day a is Monday and Weekday(a,)=5 indi-
cates @ 1is Friday. For instance, IF a = “March 3, 1998”, THEN Week-
day(a)=2, ie., Tuesday. We do not consider Saturdays and Sundays and
holidays in this study, because the stock market is closed these days.

Several sets of variables were generated from SPS00C.
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Set 1. First relative differences:
Ay(a,)= (SPSOOC(a{ )- SPSOOC(a,' ))/ SPSOOC(a: ¥ 1€ Juds = Lisyd s

This variable represents the difference between SPS00C for the i-th and the
j-th days, normalized by SP500C for the i-th day.
Example. Let i=1, j=2, +="March 3, 1998”, then

a,= <March 3, 1998, March 4, 1998, March 5, 1998, March 6, 1998,
March 9, 1998>,

where
a, =a' = “March 3,1998", a,,, =a} =“March 4, 1998,

a,, =a’ = “March 5,1998”, a,,, =a =“March 6, 1998”,
a,, =a’ = “March 9, 1998”.
Therefore,

Ay (a,) = (SP500C(a?) - SP500C(a!))/SP500C(a!)
_ (SP500C(March 4,1998) - SPS00C(March 3,1998)
SP500C(March 3,1998)

Set 2. Differences between two relative differences:
Ala) = Ajay) - Ay(ar)

This difference is based on previous relative differences.
Example. Let &4=3, then Ay(a;) = Aulay) - Ay(ay) can be written as

A, (a,) = SPS00C(March 51998) - SPSOOC(March 41998)
' SPS00C(March 4,1998)
_ (SPS00C(March 4,1998) - SPS00C(March 3,1998)
SP500C(March 3,1998) '

Set 3. Cyclic permutations {7} of length 5 for object a and function
wd(a). Function wd(a) maps five calendar days to five weekdays.
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For instance,
wd(a)=<1,2,3,4,5>
means that a represents normal five weekdays from Monday to Friday, and
wd(b) = < d,,...,ds> =<2,3,4,5,1>=<Tue, Wed, Thu, Fri, Mon>

shows that five-day object b begins from Tuesday to next Monday as the last
day of b. Using permutation # we can transform sequences of days. For ex-
ample,

n(Mon,Tue, Wed, Thu, Fri)=(Tue, Wed, Thu, Fri, Mon) = <d,,d,,d;,ds,ds>.

Thus, # is a cyclic permutation, which changes the set of weekdays
<d,,dydsd,ds> under consideration for rule discovery when considering
pairs a and b. Formally, the vector function

wd®)=<d,,....ds>
is equivalent to the expression
(Weekday(b')= d;) &Weekday(®’)= dy)&...& (Weekday(b’)=d;,

with the scalar function Weekday(d) defined at the beginning of this sec-
tion. Note that it is possible to generate hundreds of similar variables in ad-
dition to Sets 1-3. In the experimental study below, we use variables of
types 1-3 for SPS00C, their analogues for the target and DJIA.

The first two variables catch properties similar to the first and second de-
rivatives of the original time series. Analysis of more variables requires
more runtime. The goal of the current study is primarily to show the appli-
cability of the method and its capability as a knowledge acquisition tool for
financial time series.

5.3. Hypotheses and probabilistic “laws”

The next step in formulating hypotheses to be tested is to find probabil-
istic laws. The concept of a probabilistic law was defined in Chapter 4. Let’s
introduce a simplified frame notation for any five-day objects a and b and
their relations, omitting indices:
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(A(a) < AB)

is any of inequalities such as
(A(a) < Ay(b))’, (M) < Apdb)), i <j<k;ijk=1,.5,

where e€{0,1}, and e=1 means that the expression Ay(a) < Ay(b) is not
negated, and e=0 means negation of this expression, i.e.,

A(a) > Ay(b).
Also symbols €0,e1,e3,...,ek are used with e if there are more than one ex-
pression under consideration.
The following sets of hypotheses, H1-H4, are tested to find probabilistic
regularities (“laws”).
Set of Hypotheses H1:
(wd(a) = wd(b) = <di,....ds>)&(A(a) < A(b))*' = ((target(a®) < target(b*))’;

where €1= 0 means that the relation A(a) < A(b)is not negated and
€0=1 means negation of the relation target(a®) < target(b®), ic.,

target(a®) > target(b®).
Example: Let a and b are two five-day objects from March, 1998:
a=<March 3;March 4,March 5,March 6,March 9>,
b=<March 10,March 11,March 12, March 13, March 16>.
Let also
a(a)= Ajx(a), A(b)= Ap(by) <d,,...,ds>=<Tue,Wed, Thu, Fri, Mon >,

with March 3, 1998 as 3.3.98. We use similar notation for other days. There-
fore, the tested rule/hypothesis in this example is

[wd(3.3.98, 3.4.98,3.5.98,3.6.98,3.9.98)
=wd(3.10.98, 3.11.98, 3.12.98, 3.13.98, 3.16.98)
=<Tue,Wed,Thu,Fri,Mon>] & (4(a) < A(b)) = target(a®) > target(b®).
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This means testing all five-day objects beginning on Tuesday. The tested
statement 1S

IF for any five-day objects a and b beginning from Tuesday,
the SP500C difference Aja(ay) is smaller than Aja(by),

THEN the target stock for the last day of a will be greater than for the
last day of b.

Set of Hypotheses H2.

[wd(a) = wd(b) = < d,,....ds>] & [A(a) s A(b)]'&[A(a) s A(b)]?
= [target(a®) < target(b*)]*’;

This set of hypotheses has a similar interpretation. The only difference from

HI is that now we consider two differences in the rules. For example, one of
the tested statements is

IF for any five-day objects a and b with weekdays <dj,...,ds>,
the SPS00C difference Aj2(a¢) is smaller than A;z(be) AND the
SP500C difference Aas(ae) is greater than Aas(by),

THEN the target stock for the last day of a will be greater than for the
last day of b.

Set of Hypotheses H3.

[wd(a)y=wd(b)=<d,,...,ds>)&[A(r)< A(b)]* &[A(a)s A(b)]*&[A(a)s A(b)]
= [target(a®) < target(b*)]**.

These hypotheses have a similar interpretation. The only difference from H2
is that now we consider three differences in the rules. For example, one of
the tested statements is

IF for any five-day objects a and b with weekdays <dj,...,ds>, the SPS00C
difference Aja(ay) is smaller than A;x(by)

AND the SP500C difference Azs(m¢) 1s greater than Aza(be)

AND the SP500C difference Ayps(se) is greater than Ajas(by),

THEN the target stock for the last day of a will be greater then for the last
day of b.



196 Chapter 5
Set of hypotheses H4.

[wd(a) = wd(b) =< d;,....d>]&[A(a) < A& ... &[(A(a) < A(b)]™*
= [target(a®) s target(b*)]*".

These hypotheses allow us generate more than three relations including
Ayi(ay). For example, one of the tested statements is

[F for any five-day objects a and b with weekdays <d,...,ds>,
the SPS00C difference Aj(ay) is smaller than Ajx(by)

AND the SP500C difference Aas(ag) is greater than Aas(by)

AND the SP500C difference Ajz(ay) is greater than Ajzs(be)

AND...

THEN the target stock for the last day of a will be greater then
for the last day of b.

Table 5.1 shows examples of hypotheses H1-H4 in the usual financial terms.

Table 5.1. Example of rule consistent with hypotheses H1-H4

IF

Current 5 days end on Monday and there are some other (“old”) five days (from the his-
tory of years 1984-1996) that end on Monday too

AND

the relative SP500C difference between Tuesday and Thursday for the old five days is no
greater than between Tuesday and Thursday for the current five days

AND

the relative SP500C difference between Tuesday and Monday for the old five days is
greater than between Tuesday and Monday for the current five days

AND

the relative difference between SP500C differences for Tuesday, Wednesday and Wednes-
day, Thursday) for the old five days is no greater than for the pairs of days for the cur-
rent five days

AND <we omit linguistic description of (A,45(a) > Az4s(b)), which is similar to previous
one>

THEN

the target value for Monday from the current 5 days should be no greater than the target
value for the Monday from the old five days, i.e., we forecast that a target stock five days
ahead from the current Monday will grow no greater than it was five days ahead from the
old Monday.

54. Markov chains as probabilistic ‘“laws’ in finance

Many well-known prediction methods used for stock market study can be
written in terms similar to HI-H4. Markov chains and other methods ex-
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ploiting conditional probabilities (transition probabilities) exemplify these
methods. Two simple financial Markov chains are shown in Chapter 3 in
Tables 3.16 and 3.17. Figure 5.1 illustrates rules from Table 3.16, e.g.,

IF the stock increased yesterday,
THEN the stock increases today with probability 0.7.

Similarly, Markov chain 2 presented in Table 3.17 produces 16 rules such as

IF the stock increases today and decreases yesterday,
THEN the stock will increase tomorrow with probability 0.6.

Yesterday Today Tomorrow

Yesterday Today Tomorrow

Figure 5.1. Example of Markov chain rules

This type of models can be embedded into first-order logic rules and dis-
covered using this technique. Expressions (hypotheses) H1-H4 are evaluated

on training and test data using conditional probabilities. Six-day objects are
used instead of five-day objects:

<dy,...,ds,ds>=<Mon,Tue,Wed, Thu, Fri, Mon>,
(Wd(‘) = Wd(b) =< dls""d59d6>’ a=a, , “i= alﬁl-blh
ie., a is some six days and b is the next six days excluding Saturday and

Sunday overlapping the end of a and the beginning of b. Next the first rela-
tive difference for the same target stock price (S) is generated:

Ay(ay) = (S(a)-S(a')VS(x").
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This variable is equal to target(a,) five days earlier. The target represents a
five-day forecast in contrast with Ay(a,) representing the current dynamics of
the stock.

Example. Suppose that the following conditional probabilities are com-
puted on the training set TR:

0.31 for Rulel: (Ay(a¢) <Aj(@w1) = (target(a® .) < target(a® ﬁ-l),
0.69 for Rule2: (Ay(a)<Aj(Re1) = — (target(a ¢) < target(a 1))
0.65 for Rule3: — (Aj(a)<Ai(aw1) = (target(a® :)<tarset(a 1),
0.35 for Rule4: — (Ay(a)<Aij(¢+1) = — (target(a .)<target(a 1))

The symbol “—~* is used for negation as usual. These rules can be repre-
sented with a matrix of transition probabilities used in Markov chains for
forecasting:

Target

0 1

Delta (A) 0 | 0.31 0.69

1] 065 035
Here, 1 denotes “up” for target and delta (A), i.e.,
(&8¢ ) < Ay(ani), (target(a’) < target(a®i)),
respectively. Similarly, 0 denotes “down” for target and A, ie.,
(Ag(ay ) > Aglan) and (target(a’,) > target(a’u1)).
For s1mp11c1ty, we ignore cases with Ay(a.) = A(aw:) and target(a® ) = tar-
get(a%). To incorporate this, an additional state and a larger table with

three rows and three columns will be needed. In this way, refined probabil-
istic rules can be discovered:

IF Aj(a¢ ) = Aj(aw1), THEN (target(a e ) < target(a «+1)) with probability 0.65.
IF Aji(a, ) = Aj(aw1), THEN (target(a ) > target(a 1)) With probability 0.30.
IF Aj(a, ) = Aj(aw1), THEN (target(a®, ) = target(a®y,)) with probability 0.05.
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Rule 2 can be described using the usual language:
IF delta goes up, THEN target goes down probability (.69.

Several of these expressions were used to study a forecast horizon for con-
secutive days and weeks by changing <d,...,d> and the ij days, where
<dy,...,d> is extended from 5 days to 12 weeks.

5.5. Learning

Scheme. An estimate of conditional probability, P(A¢/A&...&Ay), for
each probabilistic law

C=(A|(x,y,. . .Z)&. > '&Ak(x’)'v . .Z)"Ao( XsYs: .,Z))

is computed using training data. Remember that all expressions A; in first-
order rules depend on variables x.y,...,Z, 1..6., A=A{X,Y,...Z) in contrast
with propositional logic expressions, which do not have variables x,y,...z.

Values of conditional probabilities are used as evaluation functions
combined with a test for their statistical significance. This is a relatively
common way of designing an evaluation function. The relative frequency is
used in the AQ method and statistical significance is evaluated in the CN2
method, but for entropy [Mitchell, 1997]. The MMDR method exploits an
original search mechanism to select appropriate expressions (Chapter 4) us-
ing mentioned evaluation criteria: conditional probability P(A¢/A1&...&Ay)
and Fisher statistical significance test. This search is in line with “current-
best-hypothesis” search and “least-commitment” search [Russel and Norvig,
1995], but it is applied for probabilistic hypotheses which are more com-
plex. Specifically, the search was arranged in accordance with a definition
of semantic probabilistic inference (Section 4.8.2). After finding several
nested probabilistic financial “laws”

Ck.| > Ck.; > . D> C2>C|,

the search for a new one is done by adding to the If-part of the rule Cy., a
new atomic logical expression (A(a) s A(b))". This addition is also known
as specialization [Russel and Norvig, 1995]. We find mentioned a new
logical expression using the search of logical expressions H1-H4.

The Fisher F-statistic (see Section 4.8.3, [Kendall, Stuart, 1977; Bovas,
Ledolter, 1983]) was used on each step to test statistically whether each
generated hypothesis HI-H4 is a probabilistic “law”. This test requires to
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delete some atom and to test if the remainder of the expression has less con-
ditional probability. If the conditional probability decreases with statistical
significance (with a certain level of confidence), then the tested hypothesis
as a probabilistic “law” is accepted. This resembles the idea of finding a
generalization of a hypothesis [Russel and Norvig, 1995].

Sets of hypotheses H1-H4 are tested using the training set TR =
{ai,...84} and randomly chosen pairs of objects a, b from TR by the soft-
ware "Discovery" system. To test hypotheses all sequential pairs of objects
from TR are used. The result of learning is a set Law of possible probabilis-
tic “laws” found on TR. Each of these probabilistic “laws” was described
with its conditional probability on TR.

To test if a “law” is stable, its conditional probability on the control set
CT is evaluated. However, we did not use these conditional probabilities to
choose preferred “laws” for forecasting. Therefore, the independence of the
test is preserved.

Examples of discovered rules (“laws”). Let us give three examples of
laws with relatively high conditional probabilities for both training and
test/control sets TR and CT:

Example 1.

[wd(a) = wd(b) =<2,3,4,5,1>)&(A 3(a)s As(b)) &
[Ais(2)>A5(b)] & [Az34(R) < Azsa(b)] & [Az4s(a) > Azus(b)]
= target(a®) < target(b®).

For this rule, we obtained frequency on TR equal to 0.64 and frequency on
CT equal to 0.76.

This “law” can be translated to the normal financial language (see Table
5.1). That statement is true only statistically as it reflects frequencies: the
frequency on TR equals 0.64 and the frequency on CT equals 0.76. This
means that for about 70% of those cases, we have found an upper limit for
the target value, which is the target value for the old (previous) Monday.

Let us suppose that the last target value is -3%, i.e., the closing price for
the old five days decreased. This means that one has a decrease from the
current Tuesday to the current Monday and the amount of decrease will be
greater than -3% with probability 0.7. For example, it can be -5%.

We present the next two examples without a linguistic description.

Example 2.

(wd(a) = wd(b) =<2,3,4,5,1>)&(A24(8) < A24(b))&(As(a) < Ays(b))&
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(Az34(8) > Az34(b))&(Az35(8) < Agss(b)) = (target(a®) > target(b®));

This rule has frequency 0.63 on TR and has 0.66 on CT.

Example 3.

(wd(a) = wd(b) =<2,3,4,5,1>)&(A3s(a) < Azs(b))&(Ass(r) > Ays(b))&
&(A124(8) > Ar24(b)) = (target(a®) > target(b®));

A total of 134 regularities (“laws”) have been found connecting SPS00C
and the target.

The process of generating new rules is completed when there is no rule
with higher conditional probability and statistically significant. Note this
stop criterion does not require itself to restrict the set of tested rules a priori.
The restriction can be based on the volume of available data, acceptable lev-
els of conditional probabilities and significance. For practical computations
often computations stop earlier, reaching some runtime limit and/or accept-
able level of conditional probabilities. The average of conditional probabili-
ties of these regularities in training data TR is 0.5813 and the average of
conditional probabilities on test data CT is 0.5759. All conditional prob-
abilities are evaluated as relative frequencies on TR and CT, respectively, as
is common in Machine Learning [Mitchell, 1997].

At first glance, 58% is discouraging. However, this accuracy is statisti-
cally significant. It is possible to reach much higher, but statistically insig-
nificant performance on training data, and as a result, to obtain a very low
performance on test data. This is called “overfitting” and is a well-known
problem in neural networks, getting insignificant high performance. In our
case, performance (conditional probability) is sufficiently stable when
moving from training to test data. The difference is 0.0054=0.5813-0.5759,
ie., 0.54% . Nevertheless, this difference has a variation. Typical difference
is no greater than 3% (53 regularities, i.e., 40%). There are also regularities
with significantly higher differences. This indicates some regularities be-
came stronger and some weaker in the financial time series for the last two
years. Sometimes frequencies dropped by 50%. This can mean changing
market conditions, business strategy of the target company, stockholders’
behavior or even that regularities have become known and people used
them. Thus, there are three types of regularities:

— Regularities/rules with similar performance on training and test data.

Frequency difference range is £3% (53 regularities, 40%) with only

0.14% of the average decrease of frequencies;
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— Regularities/rules with increasing performance on test data. Frequency
increased on 38 regularities (28%) with 5.8% of the average increase of
frequency;

— Regularities/rules with decreasing performance on test data. Frequency
decreases on 43 regularities (32%) with 6.6% of average decrease of fre-
quency.

This data show that the majority (40%+22%=68%) of 134 regularities per-
formed on testing data similar or better than this majority performed on
training data. Therefore, forecast can be based only on the rules with the
best performance on TR. Other rules can be ignored.

Noise issue. It is possible that the discovered rules will be corrupted by
noise in training data and, therefore, will show poor performance on data
outside of the training sample. This is a common problem of all forecast
methods. Probably MMDR suffers less from noise man other methods. If
MMBDR captured a “critical mass” of noise, this noise would be a part of a
statistically significant rule (MMDR selects only statistically significant
rules). So it is questionable whether it should be called noise. We interpret
this situation as discovering different laws on different data as is common
in scientific discovery. For example, some laws of physics, identified using
data from Earth, do not work on Moon or Mars with other gravitational lev-
els.

Often the reason that rules may not work outside the sample is that the
method is very sensitive to initial assumptions. In neural networks initial
assumptions include such parameters as weight functions, number of layers,
and so on. MMDR is relatively robust in this sense, because MMDR pays
special attention to minimize the set of assumptions.

5.6. Method of forecasting

We can use regularities from Law set for forecasting only if we know
right-side (target(a®)) or left-side (target(b®)) value of inequality

(target(a®) < target(b*))*’,

which is a part of a found regularity. For instance, IF target(b®y=45 and
¢0=0 THEN we can forecast that target(a®) >45. If we take both objects a
and b from CT, then a forecast is impossible, because both target values are
unknown. Taking, for example, object a from TR and object b from CT then
we will have a lower bound for unknown target (b%) if 0= 1, and it will be
an upper bound if €0 = 0, because the value of target(a®) is known. Taking
object a from CT and object b from TR, we will have an upper bound if €0
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=1 and it will be a lower bound if 0 = 0 for unknown value of target(a®).
In the IF-part of the rule in example 1 in section 5

(A(n) < A(D)'& ... &(A(a) < A(b))™

values of all inequalities for objects a and b are defined in TR u CT, the
union of TR and CT and this part of the rule is an expression, which relates
training and test/control objects. This expression shows similarity of objects
aandb.

A target value for object a from CT is predicted by applying all regulari-
ties (rules) from the Law set to two sets of pairs of objects

{<a,b>|b € TR} and {<b,a>|b € TR}.
For each rule, the first of these sets gives upper bounds
Up1(a®) = {target(b®)},

Ifed = 1and a set of lower bounds Lowl1(a®) = {target(b®)} if €0 =0 for
unknown value of target(a®). Similarly, the second of these sets {<b,a>|b €
TR} produces lower bounds

Low2(a®) = {target(b*)}

if 0 =1 and a set of unner hounds Up2(a®) = {target(b*)}, if €0 =0 for an
unknown value of target(a®). The whole sets of upper and lower bounds

Upl(a®), Up2(a®), Low1(a®), Low2(a®)

for target(a®) are obtained by joining these bounds for all individual regu-
larities.

The considered regularities provide a forecast for the last day of a five-
day cycle (not necessarily Friday) using data from preceding days, which
could be holidays. In this case, the forecast can not be computed. Therefore,
the forecast was made for 442 days from 506 on CT. This is not a genuine
restriction of the method. Regularities could be discovered with missing
days, but it would take more runtime. Analysis of the found regularities has
shown that regularities without identification of a particular day of the week
have significantly less prediction power.

Next, the order statistics with a confidence level is used to set forecasting
intervals and their upper and lower bounds. The problem is that sets of
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bounds Up1(a®), Up2(a®), Low1(a®) and Low2(a®) can overlap and can not
be used as forecasting intervals directly.

We compute p-quintile (p = 0.55,:0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90) for the upper bound of target(a®) and (1-p)-quintile for the lower
bound of target(a’). For each value of p-quintile (p = 0.55, 0.60, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90) there are the upper bound Upy(a®) and the lower
bound Low,(a®) for target(a®), taken respectively from

Upl(a®uUp2(a®), Lowl(a®)uLow2(a®).

By default Lowy(a®)= - for large p values (e.g. 0.80, 090, 0.95) if (1-p)-
quintile is less than the least value of the lower bound for target(a®). Simi-
larly, Up,(a’)= +e for large p values (e.g. 0.80, 0.90, 0.95), if p-quintile is
greater than the largest value of the respective upper bound. There is no
forecast if the lower bound Lowy(a®) is greater than the upper bound
Upy(a®). It took place sometimes for small p (e.g., 0.55, 0.60, 0.65). Also the
forecast is not computed if obtained p-interval is [-ee,4e0]. Note that the p-
intervals

[Lowy(a®), Upy(a’)]
for an unknown value of target(a®) are nested for growing p values, i.e.,
Low;(a®) < Low;(a®), Upn(a®) 2 Up(a®), if pl > p2.

5.7. Experiment 1

5.7.1. Forecasting Performance for hypotheses H1-H4

We have evaluated the performance of the forecast for each p-quintile

and for all objects from CT using six parameters:

- percentage of Rejections,

— percentage of Errors,

— percentage of Right forecasts,

— mean length of the p-intervals for all (right and wrong) forecasts (ML)

— mean length of the p-intervals for all right forecasts (MLR) and

— bound forecast mean square error (BF MSE), i.e. mean square difference
between the forecast and the nearest p-interval bound for forecasts which
are out of p-interval.
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For cases when one of the bounds is not defined (a “good” regulanty was
not found for that bound) we took a doubled distance from target(a®) ob-
tained by forecast and a known bound, ie., 2"(target(a ) - Low,(a’)),

if the lower bound is found. If the upper bound is known then 2*(Upy (a°) -
target(a®)) is used. Table 5.2 and Figure 5.2 show performance metrics for
test set CT of listed parameters. Figure 5.2 graphically represents first four
columns of Table 5.2. It reflects that with growth of p percent of correct
forecast is growing too. Figure 5.3 presents the generalized information
from the last three columns of Table 5.2. It shows forecast intervals and
their standard deviation for different p and found regularities.

Table 5.2. Performance metrics for a set of regularities

p- Rejections Errors Right ML MLR BF MSE
value Forecast

0.55 [ 102 (23%) | 268 (61%) | 72 (16%) 0.54 1.21 2.01
0.60 | 17 (4%) 315(71%) | 110 (25%) 0.82 1.33 1.59
0.65 | 4 (0.9%) 279 (61%) | 168 (38%) 1.24 1.57 1.75
0.70 | 4 (0.9%) 215 (49%) | 223 (50%) 1.76 2.01 1.99
075 |3 (0.7%) 176 (40%) | 263 (59%) 2.33 2.58 1.72
0.80 |3 (0.7%) 125 (28%) | 314 (71%) 3.03 3.4 1.38
0.85 | 3 (0.7%) 71 (16%) | 368 (83%) 3.94 4.09 1.22
0.90 | 10 (2.2%) 35 (7.9%) | 397 (90%) 5.19 5.25 1.10

ML is the mean length of the p-intervals for all (right and wrong) forecasts.
MLR is the mean length of the p-intervals for all right forecasts.
BF is MSE Bound Forecast Mean Square Error.

Figure 5.2. Performance of found regularities on test data.
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Table 5.3 contains the forecast for the first 15 test objects. Predicted inter-
vals are presented as two sequential numbers, e.g., 0.38 0.73. The following
notation is used: “-” means that a predicted interval does not cover the actual
target value, “+” means that a predicted interval covers the actual target
value.

Table 5.3. Forecast performance for the first 15 objects

= p= p= p= o= p= p= p= fact
# 055 fo60 | [o65| 070 ] Jo75 | [0.80 | [0.85 0.90
050 [ [038 | [0.09 | |-0.05( [-038] |0.73| [136| |-1.80 1.86
1 049 [R [0.73 | 0.93 |- [1.24 |- |1.57 |- [2.08 |+ [2.53 |+ [2.87 |+
040 [ (034 | 015| |-0.17( J041| |-0.77| [|1.12| [-1.63 1.81
2 052 |- [0.69 |- ]0.95 |- [1.11 |- |1.30 |- [1.47 |- |1.85 |+ [2.52 |+
0.06 | [-0.02 [-025| |-0.25( |-042| [093| [124]| |3.21 1.74
3 067 |- [0.84 [ 10.99 |- [1.20 |- |1.44 |- [1.54 |- |1.73 |- [275 |+
032 | [0.04| [007| [026[ [043| |065| [1.14]| [1.92 1.15
4 l022 R [038 | lo97 | Ji27 |+ [177 |+ [p22 |+ |06 [+ Jasa |+
0.39-| [0.25-| [0.04 | |026] [-0.62| |2.11| [211| |3.16 -0.26
5 [0.22 |R [0.00 R [0.32 |- [0.62 |+ |0.74 |+ [1.07 |+ |1.50 |+ [223 |+
022 | [0.08 | [-005 032 [072| |-1.07| [1.69| |-2.16 | [-0.76
6 [0.42 |- [0.73 | 11.07 |- [1.30 |- |1.85 | [231 |+ [2.84 |+ [3.17 |+
038 ( (031 | 007 | [039| |063| |-081| |1.44| [-1.69 | |0.89
7 052 |- [0.79 |- ]1.05 |- [1.13 |- |1.42 |- [1.64 |- |1.80 |+ [2.57 |+
0.17 | (003 | [034| |043| |-088]| |-1.04| [136]| |1.97 -0.49
8 1026 |- [0.40 - [1.20 |- [1.38 |- [2.63 |+ [2.77 [+ [277 |+ [2.77 |+
0.06 | |-0.26] [-026| [0.43| [-0.65| |-1.13| [-2.68 | |3.58 0.29
9 10.51 |+ [0.87 [+ [0.97 |+ [1.27 [+ [1.77 |+ [2.38 [+ [2.59 |+ [3.59 |+
10004 | |-021| [-036| [-0.56( [|-1.35] |-1.72| [|229 | [|3.17 1.21
0.75 |- 1077 |- [2.43 |+ [2.43 [+ |2.43 |+ [243 |+ 355 |+ |- |+
11{0.20 [ [0.08 | |0.06| [035| |0.73| [-1.19] |-1.69 | [2.15 0.58
0.57 |- [0.82 |+ [1.18 [+ [1.37 |+ [1.76 [+ [2.23 [+ [2.54 |+ [2.94 |+
12(0.54 | (038 | 019 | [o.15| |-0.13| [-039| |-0.65 | [-1.48 | |0.98
052 R [0.79 [ |1.01 |+ [1.13 |+ [141 |+ [1.72 |+ [2.07 |+ [2.66 |+
13[0.06 [ [0.06 | 0.06 | [0.06 | [0.06 | [-025| |-1.24 | [-124 | |o.63
0.62 |- 0.84 [+ [1.08 |+ |1.42 [+ |1.51 |+ |1.73 |+ [2.25 |+ [277 |+
14(0.04 | [-0.09| |043| [0.56| [-0.77 [-1.39] |-1.85 | [-2.32 0.95

-+

-+

1.18 [+ |1.18 [+ ]1.62 |+ [1.77 |+ [1.77 |+ |2.15 [+ |2.41 |+ [3.76 |+
15 (0.56 -2.11 -2.11 -2.11 -2.11 - - --= 1.76
0.58 |- 10.73 |- [0.92 |- [1.07 |- [1.30 |- |1.85 [+ |2.17 |+ |2.38 |+
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In addition, “R” means rejection, ie., the system refused to predict using
available data. If predicted lower and upper bounds cannot form the interval
(e.g., we have a pair 050, 0.49) then we reject the forecast for this case,
which is marked as R. Let us comment Table 5.3 for line 1.

There is no forecast for object #1 (five days) for p=0.55 because of in-
consistent boundaries [0.50, 0.49]. Here lower bound is larger than upper
bound. In addition, the forecast is wrong for p=0.6, p=0.65, p=0.70, p=0.75,
because the actual value 1.86 is not covered by the intervals. The forecasts
are correct for p=0.85 and p=0.9, i.c., inside of the intervals: [-1.36, 2.53]
and [-1.80, 2.87]. This is a natural result. Moving to higher p means using a
wider interval. There is no natural way to measure performance with Mean
Square Error (MSE) in this situation. The interval forecast does not give us a
particular predicted value.

- N W e OO

s a6 065 a7 a7 Q8 Q85 ae prahe

B ntervd (M) M st deviation flomBF VBE

Figure 53. Forecast intervals for found regularities.

There is no one value of the distance from an actual value to a predicted
one. We predict an interval of possible target values. Therefore, the distance
to the nearest interval boundary is estimated. The distances from 1.86 to the
nearest boundary (2.53) for p=0.85 is 0.67 and for p=0.9 this distance is
1.01, i.e. about 1%. These data are generalized in Table 5.3 for all test ob-
jects (CT set). For p=0.85 we have 0.7% of rejections from forecast, 16 % of
errors and 83% right interval forecasts.

5.7.2. Forecasting performance for a specific regularity

The regularity in Example 1 (section 5, this chapter) was identified with
440 objects from training set TR. There are also 89 five-day sequences
available in test set CT to test this regularity. We considered different p-
values and found the number of objects from those 89 objects, which are
related to a particular p-value. For example p=0.55 brings us 58 objects and
28 of them were predicted correctly (in relatively narrow forecast interval).
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See Table 5.4. Increasing p allowed us to get up to 100% correct forecast,
but with a wider forecast interval and less number of objects (see Figure 5.4
and Table 5.4). It means that for practical forecast some intermediate ac-
ceptable level of p must be chosen. Figure 5.4 shows approximately equal
number of right forecasts, wrong forecasts and rejections for p=0.55 and
growth of rejections and decreasing the number of wrong forecasts.

Table 5.4. Performance for regularity from Example 1

p-value Right forecast ML MLR BFMSE
0.55 28 from 58 (48,3%) 2.806 0.269 2.640
0.60 36 from 62 (58.1%) 3.111 0.925 3.347
0.65 34 from 56 (60.7%) 3.471 1.386 2.146
0.70 30 from 46 (65.2%) 4.081 2.119 1.989
0.75 26 from 37 (70.3%) 5.059 3.172 0.604
0.80 24 from 29 (82.8%) 4.962 4.013 0.114
0.85 16 from 18 (88.9%) 6.129 5.411 0.029
0.90 8 from 8 (100%) 6.221 6.221 0.000
100%

90%

80% A

70% 1— =

§0% Orejected

50% - _| |Merrors

0% | |=rignt
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Figure 54. Performance of an individual regularity for 89 test objects

This choice depends on investor’s individual purposes, acceptable risk
level and environment. Therefore, it should be a part of a trading strategy,
which requires a special study probably similar to portfolio selection with
risky securities [Hiller, Lieberman, 1995, pp.561-563]. We leave the sys-
tematic study of this issue out of this book. Without that analysis we assume
that reasonable level of p-value for data presented in Table 54 would be

[0.65, 0.75].

Let us comment on the advantage of predicting the target using a par-
ticular regularity like hypotheses H1-H4. If we exploit all 134 found regu-



Financial Applications of Relational Data Mining 209

larities, the target can be predicted practically for all possible objects, but
for some of them, the forecast interval can be very large and useless. Using a
particular regularity from HI-H4 often the target can be predicted only for a
few specific objects but much more accurately. Those specific objects are
selected by testing the statement Q of the regularity (IF Q then T). Only If
the Q statement is true for those specific objects will T be applied. This
means that relational regularities refuse to make any stock market decision
for objects where there is insufficient information for an accurate forecast.
This approach seems more rational than other approaches, which deliver
forecasts always using one ‘“‘universal” formula (rule) for all objects. In
sections 7.1 and 7.2, SP500C was used to predict the target. In the next sec-
tion, values of the target itself are used to predict the target. This is a typical
approach in Markov chains models (see Section 5.4).

5.7.3. Forecasting performance for Markovian expressions

This section shows that first-order logic can help in discovering Markov
chain type models automatically. Traditionally, states for a Markov chain
are designed manually and then a forecasting Markov chain model is con-
structed (see Section 5.4). This process is very informal and its success
heavily depends on the correct choice of states.

Consider the rules:

a) IF the target decreases from the previous Monday to the current Monday

THEN the target will increase for the next Tuesday with probability Py.
b) IF the target increases from the previous Monday to the current Monday

THEN the target will decrease for the next Tuesday with probability P,.
These rules match a Markov chain similar to that shown in Section 54.
There are four states in these rules:

1. previous Monday,

2. current Monday,

3. previous Tuesday,

4. current Tuesday.

If at least one of the probabilities Py or P; is large enough the model can be
used for stock forecasting. If both probabilities Py and Py are close to 0.5
(a 50/50 chance) the model does not have predictive power at all. In this
case, another combination of weekdays can be tried. There are many of
these combinations and their number grows very fast especially if each state
will consist of several weekdays. For example, the Markov chain depicted in
Table 3.17 consists of states with two weekdays each.

A mechanism to find the best set of states automatically is discussed be-
low. This relational data mining mechanism is based on four principles.
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The first one is Occam’s razor principle: prefer the simplest rules that
fits the data [Mitchell, 1977]. What does it mean fit the data? We use a spe-
cific version of Occam’s razor: prefer the simplest rules with maximum ex-
pected forecasting stability when moving from sample to a real forecast.
This expected stability is evaluated using a statistical test.

The second one is: prefer simplest first-order rules and avoid complex
prepositional rules (see Chapters 3 and 4).

The third principle is: prefer rules based on interpretable relations
(predicates). Relations are interpretable if they are constructed in accordance
with fundamental representative measurement theory [Krantz et al, 1971,
1989, 1990]. As we discussed in Chapter 4, any fundamental measurement
can be presented using first-order logic assertions. Krantz et al [1971,
1989, 1990] developed these presentations for the most popular scales as or-
der, interval, relational and absolute scales.

The fourth principle is: prefer rules with directly evaluated perform-
ance of the forecast. Conditional probabilities found in Markov chain type
of models have direct relationship with performance of the forecast, ie.,
how these rules are confirmed on control/test data (CT). For testing rules,
we only need to find these probabilities on CT and compare them with prob-
abilities on training data (TR). If probabilities on CT are similar or higher
than on TR then rules are confirmed.

Using these principles in the frame of the MMDR relational data mining
method, one of the found pairs of these regularities has relatively good pre-
dictive power (probabilities 0.66 and 0.75 on test set CT). Such regulari-
ties can be tested for practical forecast of the target.

The matrix of conditional probabilities is similar to a confusion matrix
used in [Swanson, White, 1995] as a measure of forecast performance that is
calculated how well a given forecasting procedure identifies the direction of
change in the spot rate. We get probabilities dividing values on total number
of cases for each row of this matrix. For example, a hypothetical confusion
matrix

Actual
up down
up 36 15
Predicted
down 12 26

presented in [Swanson, White, 1995] can be naturally transformed to a tran-
sition probability matrix:
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Actual
up down

up 36/(36+15) 15/(36+15)
Predicted

down| 12(12+26) 26/(12+26)

with values 0.7 and 0.3 on the first row and 0.31 and 0.69 on the second
row. This way, the diagonal cell corresponds to correct directional predic-
tions and off-diagonal cell corresponds to incorrect predictions. Swanson
and White measures overall performance with model’s confusion rate, the
sum of the off-diagonal elements, divided by the sum of all elements and
statistical criterion offered by Henrikson and Merton [1981]. In transition
probability matrixes (see Section 4.4 and Table 5.5), we use prediction rules:

IF delta goes up THEN target goes down,
IF delta goes down THEN target goes up.

Therefore, anti-diagonal elements in conditional probability matrices meas-
ure overall performance of these prediction rules. Anti-diagonal elements
should be close to 1 for a good performance. This is only one technical dif-
ference from confusion matrix [Swanson, White, 1995] where off-diagonal
elements are used. We obtained A normalized confusion matrix was ob-
tained for Table 5.5 and is shown below:

Actual
| up down
up 0.7 0.3
Predicted
down 0.16 0.84

The natural buy/sell prediction strategy is based on this directional fore-
cast [Cheng and Wagner, 1996]

Buy, if UP

Prediction =
rediction { Sell, i DOWN

The horizon of that forecast was studied (see figure 5.5). Regularities (a) and
(b) are restricted. They are not applicable for all days, e.g., (a) and (b) are
not applicable for Wednesday and Thursday forecast. The most promising is
the forecast for one week among found regularities. There are also some
lower chances for success for 5 and 8 weeks, but the majority of probabili-
ties beyond one-week horizon is too close to 50:50. In Figure 5.6 the upper
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line shows transition probabilities for up—up and lower line shows transi-
tion up—>down. Direct testing of regularities on the test data are given in
Table 5.5 (one-week horizon). This testing confirms the discovered regu-
larities. In fact, they are even more confirmed in 1995-1996 data than in the
training data (1985-1994).
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Figure 5.5. Transition probabilities for 12 weeks (training data)

In Table 5.5, we use notation from section 5.4.Transition probability for
training data is 0.69 for transition from up to down and 0.65 is for transi-
tion from down to up. Table 5.5 shows probabilities 0.7 and 0.84, respec-
tively on the testing data (1995-1996).

Table 5.5. Transition probabilities for test data

Target
Delta Up Down
Up 0.3 0.7
Down 0.84 0.16

5.8. Experiment 2

This experiment uses daily data of SP500 for ten years as a training set
(1984-1994) and daily data for four years (1995-1998) as test data. Test data
were divided in two separate test sets (1995-1996) and (1997-1998) and
thousands of hypotheses about the structure of the time series were tested
(see examples in figure 5.6), e.g., structure 1 in Figure 5.6 means that

IF SP500C went up from Friday three weeks ago to the Wednesday two
weeks ago

AND went down from that day to Monday of the current week
THEN the SP500C will go up to the next Monday.
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Structures 2,3 and 4 have similar description. Structure 1 was discovered in
training data (1985-1994) and was confirmed on testing data (1995-1996)
in 78% of cases. Similar estimates are presented in figure 5.6 for the rest of
these rules. Term anchor is used in Figure 5.6 to show points structured re-
lations between which are discovered.

MMDR method outperformed the risk free investment for both test peri-
ods 1995-1996 and 1997-1998. The simulated annual returns are 143.83%
(1997-1998) and 126,69% (1995-1996) of initial investment in contrast with
103.05% in the risk free investment (see Chapter 6).

structure1 structure2 structure3 structure4 weekday week
‘orecast for |Friday forecast week
orecast for Thursday  |forecast week
up Wednesday |forecast week
forecast for | |up Tuesday  |forecast week
‘orecast for Monday forecast week
up urrent day |Friday current week
Thursday  |current week
up rrent day | | down Wednesday |current week
current day | [ down Tuesday current week
rrent day l anchor2 Monday current week
Ewn anchor2 4 Friday one week ago
anchor2 Thursday |one week ago
M down Wednesday jone week ago
down Tuesday one week ago
anchor1 Monday one week ago
up Friday two weeks ago
Thursday  |two weeks ago
anchor2 Wednesday |two weeks ago
( Tuesday two weeks ago
up ‘— anchor1 Monday two weeks ago
anchor1 Friday three weeks ago
Thursday |three weeks ago
Wednesday |three weeks ago
Tuesday |three weeks ago
Monday |three weeks ago
training 0.74  [training 0.72 training 0.7 training 0.7
testing 0.78 testing 0.73 testing 0.71 testing 0.82

Figure 5.6. Examples of discovered structures (forecasting rules)

5.9. Interval stock forecast for portfolio selection

The interval stock forecast can be viewed as an integral part of portfolio
selection with risky securities. One of the known non-linear optimization
models for portfolio selection is based on the study done by Markowitz and
Sharpe. This study is related to the work for which they won the 1991 Nobel
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Prize in Economics Let us present the basic elements of that model [Hiller
and Lieberman, 1995].

There are n stocks considered for inclusion in the portfolio x and x; is the
number of shares of stock j, x=(x},X,...,Xn). For each stock j the estimated
mean return on one share ;is computed using historical data. Similarly, the
variance o and the covariance o of return on one share are estimated for all
stocks 1 and j. The value oy measures the risk of the stock j. The two func-
tions R and V are introduced:

R@) =D p,x;, V@)= oyx%,

j-l =] j-'

The first one represents the total return and the second one the risk associ-
ated with the portfolio. The objective function to be maximized is

J)=R(x)-BV (%),

where the parameter p is a nonnegative constant that reflects the investor’s
desired trade-off between expected return and risk. Choosing =0 implies
that risk should be ignored completely, whereas choosing a large value for p
places a heavy weight on minimizing risk. This way investor’s expected
utility can be maximized if the model captured investor’s utility function
(relative value to the investor of different total returns) [Bazaraa et al, 1993].

There is a bottleneck in this model to identify B, {4} and {ay}. Therefore,
it is common to use a parametric (nonlinear) programming approach to gen-
erate the optimal solution as a function of B over a wide range of values of B.
The next step is to examine the values of R(x) and V(x) for those solutions
that are optimal for some value of £ and then to choose the solution that
seems to give the best trade-off between these two quantities. This proce-
dure is referred to as generating the solutions x on the efficient frontier
[Hiller, Lieberman, 1995] and as a Pareto solution.

The drawback related to {z4} and {a} is that values are only mean and
variance over a period of time. Different periods may produce different
mean and variance. It is not clear which of them will have similar values for
portfolio selection term. Therefore, the usage of predicted values of mean
and variance appears a natural extension of that model. Predicted intervals
for a stock j can substitute the stock variance and the middle of that interval
can substitute mean 2. Also, having probabilities and respective forecast for
discovered rules (“laws”), it is possible to incorporate them into decision
analysis models to maximize payoff over possible alternatives [Hiller, Lie-
berman, 1995] in stochastic programming setting.
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5.10. Predicate invention for financial applications: calen-
dar effects

Discovering relational regularities in finance assumes that relations
(predicates) are already formulated. Below the term, invention of predi-
cates is used for the process of formulating predicates. The predicates and
rules presented below are generated using calendar effects listed in financial
publications. Table 5.6 present rules for in the month effects. Tables 5.7-
5.10 show effects related to day-of-the-week effects, a month and a year
in predicate terms. Notation is presented in Table 5.11. All these tables use
term week. We follow the definition used by [Sullivan et all, 1998]. The
“weeks” are constructed such that the first trading day of the month always
occurs in the first week. If the first trading day of the month is a Friday (and
there is no Saturday trading), then the first week will only contain 1 day; the

following Monday will be part of week 2, and so forth.

Table 5.6. In the month effects

Possible Rules for testing

Description

Day of the month effects
IF IsFri(x) & IsMon(y) & InJan(x) & In-

Jan(y)
THEN ReturnClose(x)<ReturnClose(y)

In January Monday returns are positive,
while they become negative during the
remaining part of the year [Keim and
Stambaugh 1984]

Week of the month

IF IsInSecondWeek(x) & IsInFirstWeek(y)
& InJan(x) & InJan(y)

THEN ReturnClose(x)>ReturnClose(y)

There are 60 rules, which are long (short)
on each of the five weeks while being
neutral otherwise, and rules, which are
neutral on each of the five weeks while
being long (short) otherwise [Sullivan et
al, 1998].

Half of the month

IF [IsInFirstHalfMonth(x)OR IsImmedPri-
orFirstHalfMonth(x)]& IsInSecondHalfPre-
viousMonth(y)

THEN ReturnClose(x)>ReturnClose(y)

Mean stock returns are positive only for
days immediately prior to or during the
first half of calendar months [Ariel, 1987]
There is a difference between returns
during the first and second half of the
month [Lakonishok and Smidt, 1988]

Beginning of the month

IF BeginMonth(x) &InJan(x)
THEN ReturnSmallFirmClose(x)>
ReturnLargeFirmClose(x)

Small firms have paid higher mean re-
turns than large ones at the beginning of
January in 32 out of 33 years, c.f, Ka-
mara [1998]

Day of the week of the month

IF IsFri(x) & IsFri(y) &
IsInSecondWeek(x)& IsInFirstWeek(y)
&InJan(x) & InJan(y)

THEN ReturnClose(x)>ReturnClose(y)

For details see [Wang, Li, Erickson
[1997].




216

Table 5.7. Day of the week effects

Chapter 5

Possible Rules for testing

Description

IF IsFri(x) & IsMon(y) & NextTradDay(x,y)

THEN

ReturnCloseSP500(x)>ReturnCloseSP500(y)

Returns on the S&P 500 tend to be
negative from Friday’s close to Mon-
day’s close [French, 1980]

IF IsFri(x) &IsMon(y) & NextTradDay(x,y)

THEN ReturnClose(x)>ReturnOpen(y)

Negative average returns from Friday’s
close to Monday’s open [Smirlock,
Starks, 1986]

IF IsMon(x)THEN ReturnOpen(x)>

Negative returns occur in every hour of

Return1HourAfterOpen(x); trading on Mondays [Smirlock and

IF IsMon(x) THEN ReturnlHourAfterOpen(x) | Starks, 1986]

> Return2HourAfterOpen(x)

IF InMon(x) Optimal calendar rule is to be neutral

THEN BeNeutral(x) on Mondays and be back in the market
from Tuesdays to Fridays [Sullivan et
al, 1998]

Table 5.8. The month effects
Possible Rule Description

Month of the year

IF InJan(x)&InDec(y)
THEN ReturnSmall-
Firm(x)>ReturnSmallFirm(y)

IF InJan(x) & InDec(y)
THEN ReturnForeignFirm(x)>
ReturnForeignFirm(y)

IF InJan(x)&InDec(y)
THEN ReturnForeign-
Firm(x)>ReturnLargeFirm(y)

IF InJan(x)&InDec(y)
THEN ReturnSmall-
Firm(x)>ReturnLargeFirm(y)

The high returns in January, are largely associated
with small or foreign firms’ equities [Sullivan at
al, 1998].

Hypothetical rules which are long (short) on each
of the twelve months while being neutral other-
wise, and rules which are neutral on each of the
twelve months while being long (short) other-
wise.Keim and Stambaugh [1984], Roll [1983],
and Rozeff and Kinney [1976] investigate these
calendar rules. The full universe number of these
rules is 8,188 [Sullivan at al, 1998].

Turn of the month

Very strong turn-of-the-month effect, especially
between the last day of the month and the first

IF LastDayMonth(y)& three days of the subsequent month [Lakonishok
InFirstThreeDaysSubseqMonth(x) and Smidt, 1988]
THEN Return(x)>Return(y)

Table 5.10 presents explanation related to some of these effects and Ta-
bles 5.11 and 5.12 show predicates for discovering calendar effects.
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Table 5.9. The year effects
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Possible Rule Description

Turn of the year

IF LastTradingDayYear(x) Very high abnormal returns for the ending on the
THEN last trading day of the year [Lakonishok and
ReturnClose(x)>ReturnOpen(x) Smidt, 1988]

Holiday Very high abnormal returns for the period begin-
IF PreChristmas(y) & ning on the last pre-Christmas trading [Lakon-
NotLastPreCristmas(y) & ishok and Smidt, 1988]

LastPreChristmas(x)

THEN Return(x)>Return(y)

Table 5.10. Explanations of rules

Effect

Explanations

Day of the week

Explanations offered for the strong Monday effect in stock
returns data include delays between trading and settlements in
stocks [Lakonishok and Levi, 1982],
Monday effect actually lies outside the specificity of Mondays
and rather has to do with the very large number of rules con-
sidered besides the Monday rule [Sullivan at al, 1998]

Month of the year

The January effect has been linked to year-end tax-loss selling
pressure that could suppress stock prices in December, only
for them to bounce back in early January [Silluvan at al, 1998]

Table 5.11. Predicates for calendar indicators, return indicators and trade signals

Indicators Number | Predicates

Days (Mon,Tues, Wed, Thur,Fri) 5 IsMon(x), IsTues(x), IsWed(x)
IsThur(x), IsFri(x)

Weeks (first, second, third, 5 InFirstWeek(x)

forth, fifth) InSecondWeek(x)
InThirdWeek(x)
InFourthWeek(x)
InFirstWeek(x)

Semi-months 2 InFirstHalf(x), InSecondHalf(x)

Months 12 InJan(x), InFeb(x),InMarch(x)...,
InDec(x)

Holidays (Christmas, 2 BeforeHoliday(x)

New Year, President’s Day, AfterHoliday(x)

Independence Day)

Pre Christmas day 10 PreChristmas(y)

Next Trading Day NextTradDay(x,y)
x is the next trading day after y

Last Pre Christmas Day 1 LastPreChristmas(x)

Last Day of the Month 1 LastDayMonth(y)
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Sullivan at al. [1998] estimated the number of rules for some of these
cases. There are thousands them to be tested using data mining methods.

Table 5.12. More predicates for calendar indicators, return indicators and trade signals

Indicators Number | Predicates

In First Three Days of Subse- 3 InFirstThreeDaysSubseqMonth(x)
quent Month

ReturnOpen(x) 8 ReturnOpen(x)
Return1HourAfterOpen(x) Return1HourAfterOpen(x)
Returnt2HourAfterOpen(x) Returnt2HourAfterOpen(x)
Return3HourAfterOpen(x) Return3HourAfterOpen(x)
ReturnClose(x) ReturnClose(x)

Type of Securities 4 Stock(x), Bond(x),...
BeNeutral(x) 1 BeNeutral(x)

BeLong(x) 1 BeLong(x)

BeShort(x) 1 BeShort(x)

5.11. Conclusion

Relational data mining based on inductive logic programming, first-order
logic and probabilsitic estimates has several important advantages known
from theoretical viewpoint Computational experiments presented in this
chapter have shown these advantages practically for real financial data.

Relational data mining methods and MMDR method, in particular, are
able to discover useful regularities in financial time series for stock market
prediction. In the time frames of the current study we obtained positive re-
sults using separately, SPS00C and history of target itself for target forecast.
The best of these regularities had shown about 75 % of correct forecasts on
test data (1995-1996). The target variable was predicted using separately
SP500 (close) and the target variable’s own history. Comparison of per-
formance with other methods is presented in the next chapter.
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Comparison of Performance of RDM and other
methods in financial applications

An economist is an expert who will know tomorrow why the things he
predictedyesterday didn't happen today.
Laurence J. Peter

6.1. Forecasting methods

In this chapter, we compare performance relational methods (MMDR
and FOIL, Chapter 4) with neural networks (Chapter 2), ARIMA (Chapter
2), decision trees (Chapter 3) and linear adaptive forecasting methods (this
section). Along with these methods, different trading strategies are exploited
to simulate trading gain/loss. Active trading strategies are produced using
these methods. Passive strategies do not assume regular trading. Passive
strategies like buy-and-hold, and risk free investment with 3% interest are
considered as benchmarks. Methods are compared on the same financial
data as were used in Experiments 1 and 2 in Chapter 5.

Adaptive Linear Forecast. A simple adaptive linear forecast is defined
as follows: ywi=yi+ €, where i1, is a predicted stock price, €=yi-yi1 (i>1)
and y;, and y;.y are stock prices for consecutive days used for forecasting yis1.
This strategy means that the forecast Yi1=y+ € for the next day (i+1) is
computed using the current stock value y; and the current change of the price
e as a difference from the previous day to the current day’s price, €=Yiyi..

This simple strategy is computationally attractive. It does not require any
sophisticated computing resources. In spite of simplicity, this strategy deliv-
ered about 120% of annual return, as we show below in two test periods in
Experiment 2.
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In the same experiment, MMDR method outperformed the risk free in-
vestment for both test periods 1995-1996 and 1997-1998. The simulated
annual returns are 143.83% (1997-1998) and 126.69% (1995-1996) of initial
investment in contrast with 3.05% in the risk free investment.

6.2. Approach: measures of performance

Comparable output. Outputs of different methods are not unified, but
this is the first requirement for comparing the performance of different
methods. For instance, regularities HIH3 (Section 5.3) deliver interval
forecasts. Regularities H4 (Section 5.3) deliver threshold forecasts, e.g.,
stock price S will be no less than the threshold C (S2C). There are also
“point” forecasts, delivering a particular value of the stock. It is not a triv-
ial task to measure which one is closer to the actual value of a stock. For
instance, a point forecast delivered a value 56.4 instead of 57.2 with a 0.8
difference between these numbers. An interval forecast delivered a correct
but wide interval [56.9, 58.5] with a 0.3 difference from the lower limit and
with a 13 difference from the upper limits. The average distance (0.8) from
the actual value 57.2 to the limits 569 and 58.5 is the same as for a point
forecast. A similar problem exists for comparing interval and point forecasts
with a threshold forecast. For instance, a threshold forecast can deliver the
statement StockPrice(t+1) > 57.1 with differences ranging from 0.1 to a
maximum possible difference, say 10.0.

Simulated trading. Fortunately, different forecasts can be compared us-
ing a simulated trading performance. A forecast giving the best performance
obviously has an advantage. In this way, a stock forecast is generated. Then
a trading signal is produced for this forecast and gain/loss is computed using
actual stock data.

However, measuring simulated trading performance has a drawback. This
test of a time series forecast requires a trading strategy. Therefore, forecast
is tested together with a trading strategy. The forecast can be wrong or in-
efficient as well as the trading strategy. Therefore, this comparison can not
be a final comparison of forecast methods, but it gives a useful output
about the practical value of a forecast method in trade. This issue is dis-
cussed in [Bengio, 1997].

In Experiment 1 a simulated trading over 1995-1996 years for a specific
stock was conducted for regularities in the form of H4 (Section 5.3).

In Experiment 2 a forecast delivers a daily closing value for SPS00. Then
simulated trading mechanisms deliver gain/loss over 1995-1998 years by
comparing results of simulated trading with actual stock prices.

Trading strategies. The formula below shows signals of the trading
strategy based on a linear forecast of y;
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; { buy on date i,if y,,, >y, (predicts an up market) M

Nn= sell on date i,if y, > y,,, (predicts a down market)

Here to simplify consideration we omitted the case with equal stock prices
y=Yi+1. Formula (1) means making a profit buying a stock today (date 1) if
its price will be higher tomorrow (date i+1) according to the forecast. Simi-
larly, the stock is sold today if its predicted price for tomorrow is less than
today’s price. Apte and Hong [1996] used an alternative trading strategy
with a 6% threshold (see Section 3.2):

— Sell all securities from sorted list whose predicted excess return is less
than -6%, applying a 0.5% transaction fee to every trade (because of the
price decline).

— Buy all securities from sorted list whose predicted excess return is
greater than 6%, applying a 0.5% transaction fee to every trade.

The last strategy works with numeric “point’ forecasts, but does not work
for up/down forecasts without a special pre-processing, which changes the
target variable. For instance, in pre-processmg, the target variable T(t) can
be generated from actual stock prices S(t) using the formula:

1, if ((S(t)-S(t-1)VS(t-1) 2 0.06 (buy)
T()=1 0, if ((S()-S(t-1))/S(t-1)<0.06(hold)
~1, if ((S(t)-S(t-1))/S(t-1) 2 -0.06 (sell)

An interval forecast can be associated with several trading strategies such
as:
. _ |buy on date i, if middle_of_interval > y, (up market)
Y1 =\sell on date i,if y, > middle_of interval (down market).

Similar strategies can be produced using lower and upper bounds of the in-

terval. Strategies can also differ in the use of gain. In Section 2.2 three op-

tions were discussed:

a) The investor sells the security and then buys it back at a lower price.

b) The investor takes the cash proceeds from the sale and puts them to work
in a savings account or any other investment.

¢) The investor wants to own the stock long term (passive buy-and-hold
strategy).

Performance of these strategies depends on the transaction prices, costs and

stock dividends. In this chapter, analysis is based on options (a) and (c).
Measures of performance. There are several measures of performance

of the simulated trading [Caldwell, 1997]. The Sharpe Ratio includes a

component of volatility or risk as the standard deviation of actual returns,
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rather than the actual process. The standard deviation is computed across a
20-day sliding window (a trading month) of return. The Sharpe Ratio de-
ducts from accumulated returns (over a defined period, e.g., 20 days) those
returns that would result from an appropriate risk-free investment. The risk-
free investment is represented by assigning a 3.0% annual return. Also a
transaction cost of 0.1% of the price is applied [Caldwell, 1997].

The Sharpe ratio catches many important characteristics of simulated
trading and forecasting methods, but it is not so intuitive for investors as an
annual gain/loss (G). The gross gainfloss (GG) before any taxes is defined
as a percentage of initial investment:

GG= 100*(final capital -initial invested capital)/(initial invested capital).

Similarly G=GG/N, where G is an annual gain/loss and N is the number of
years of investment.

6.3. Experiment 1: simulated trading performance

In this section, we discuss testing the discovered regularities on the test
data (1995-1996) using simulated trading performance. For other details of
Experiment 1, see Section 5.7. A simulated trading performance for the tar-
get (T) was evaluated on the test data (1995-1996). The target was scaled
using the formula T*=10*(T+S5) to get more convenient larger numbers. The
scaling does not change the performance. An active trade strategy was com-
pared with a buy-and-hold strategy for the 1995-1996 years (Table 6.1 and
Figures 6.1 and 6.2). Buy-and-hold strategy means in our simulation “buy-
ing” n shares at the first trading day of 1995 and “selling” them at the last
trading day of 1996. In this way, 48 shares were “bought” for 55.6 each (to-
tal investment 2668.7) on January 3, 1995 and “sold” for 60.36 on Decem-
ber 31, 1996 with gain of 228.44 (8.56% of the initial buy-and-hold invest-
ment).

Table 6.1. Simulated trading performance for 1995-1996.

Characteristics Active trading | Buy-and-hold
Average investment for 1995-1996 994.53 2668.7
Final number of shares 48 48
Gain for 1995-1996 1059.87 228.44
Gain (% to the final capital) 52.92% 7.88%
Gain (% to the average active trading investment) 106.57% Not applicable
Gain (% to the initial buy-and-hold investment) Not applicable 8.56%
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The active trading delivered a simulated gain of 1059.87 (for 48 shares)
in contrast with 22837 in the buy-and-hold strategy for the same 48 shares
(Table 6.1). To simplify consideration all taxes are ignored. The initial in-
vestment used in the active strategy is much smaller (169.68) with average
investment over two years equal to 994.53 in contrast with 2668.7 in the
buy-and-hold strategy. It means that the active strategy does not require
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Trading days chosen using forecast

Figure 6.1. Difference in performance between active trading and buy-and-hold (1995-1996).

“tying up” 2668.7 in shares for two years. The gain is 52.92% of the final
capital for the active strategy and 7.88% gain of the final capital for the buy-
and-hold strategy (Table 6.1). Therefore, the active strategy outperformed
the buy-and-hold strategy. All taxes were ignored as we mentioned before.

Figures 6.1 and 6.2 show gain/loss dynamics for the 1995-1996 years.
Figure 6.1 shows how the active strategy outperformed the buy-and-hold
strategy. Figure 6.2 shows performance of both strategies, which is the basis
for Figure 6.1. Trading days are numbered on these figures from 1 to 53.
These days were chosen over 1995-1996 using discovered rules and fore-
casts based on these rules. The rules used are applicable only for these days
of 1995-1996.

To illustrate how this result was reached and how the trading dates were
chosen, simulated trade for January 1995 is presented in more detail. The
real trading interval in the active trading strategy is shorter. It begins on
January 16,1995. How was January 16 selected instead of the first trading
day in 19957 January 16 is the first day with sufficient data to use tested
regularities. These data are applicable only for trading days with particular
properties. Therefore, the scope of these regularities can be relatively nar-
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row. Nevertheless the mentioned regularities can deliver more exact fore-
casts than a regularity applicable for all trading days, because deeper and
more specific properties are captured. An extended set of rules can be dis-
covered in the same way and be applicable for a wider set of trading days.
Meanwhile, we show that an active strategy with discovered regularities al-
ready outperforms a buy-and-hold strategy.

2000 Trading days chosen using stock forecast

[—+—Active trading —— Buy-and-hoid |

Figure 6.2. Simulated trading performance (1995-1996)

There is a mechanism within an active trade whether to chose a trade on a
particular day, e.g., January 3. In the buy-and-hold strategy, this date is cho-
sen formally as the beginning of the year. In the active strategy, rules dis-
covered on TC (trading data) were applied, ie., data from 1985-1994. Only
data of 1995-1996 were used to make trading decisions using these rules.
Only on January 16 are enough data obtained for applying discovered rules
(IF-part of the rule is equal to 1). On January 16 the applicable rules forecast
that the price will go up on January 23. Therefore, January 16 is the time to
buy shares and January 23 is the time to sell if the forecast is correct. So,
“buy” shares on January 16. On January 23 the rules forecast that the price
will go down on January 30 with high probability. Thus, January 23 is the
time to sell, but there is also a relatively high probability that the price will
continue to grow. Therefore, “sell” only half of the shares. This can give
extra gain, but force the use of a more complex active strategy. Here a sim-
pler active strategy is followed -- “to sell all shares just bought”. In this
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way, a gain is obtained on January 23. As was mentioned, the forecast for
January 30 is that share prices will go down. Thus, the shares should be
sold, but already all shares have been sold . Therefore, there is no trade on
January 30. If we had more shares on that day an extra gain could be
achieved, because the share’s value is higher on January 30,1995. The next
forecast on February 6 indicates that share prices will go up on February 13,
so February 6 is the time to buy. The further dynamics of gain/losses is
shown in Figures 6.1 and 6.2. These figures illustrate that the active strategy,
using discovered regularities and forecast, outperformed the buy-and-hold
strategy for the test years (1995-1996).

6.4. Experiment 1: comparison with ARIMA

Experiments with ARIMA models were summarized in Table 2.1
(Section 2.2). Forecasting performance of these models ranges from 62.58%
to 79.6% on testing data (1995-1996). Parameters for the most successful
models 4 and 5 were discovered using the relational data mining approach
and the MMDR algorithm described in Chapters 4 and 5.

As was discussed in Section 2.2 for target T the sign of T(t+1)-T(2) was
predicted with high accuracy, but not a value. A correct forecast of the sign
is sufficient to form a successful buy/hold/sell strategy. The sign forecast is
simpler than the absolute value forecast and first-order logic methods spe-
cifically fit to discover sign forecast rules.

One can not say that models presented in Section 2.2 are the best possi-
ble ARIMA models for the studied data. There are many ways for adjusting
ARIMA parameters. In one of the ARIMA packages available for investors
(“Forecast Expert”, SBS Inc.), we experimented with an automatic adjust-
ment mechanism. The result is 58% of the correct sign forecasts of the Dow-
Jones Industrial Average (forecast 25 days ahead during 1994). This result
indicates that there is room to improve an adjustment mechanism in
ARIMA. The MMDR and other first order logic methods can be effective
for these purposes. In particular, parameters of the best ARIMA models #4
and #5 were discovered by MMDR.

General problems of the ARIMA model are presented in Montgomery et
al [1990]. “...there is not at present a convenient way to modify or update
the estimates of the model parameters as each new observations become
available, such as there is in direct smoothing. Future evolution of the time
series will be identical to the past, that is, the form of the model will not
change over time.”
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Table 6.1. ARIMA performance.

Mo- | Forecasting Comment
del performance
(correct
# | buy/sell signal)
1 No forecast Buy/sell strategy is based on non-zero difference between

T(t+1) and T(z). This random walk model has zero difference
for all days. Only random advice is possible here with 50% of
success.

2 62.58% This model was selected without any connections with MMDR.
Its forecast is less precise than produced by MMDR ( 0.7 and
(.84, respectively, correct up-down and down-up forecasts).

3 58.84% This model was selected without any connections with MMDR.
It is less precise than the rules produced by MMDR
4 79.6% This simple Markov process was identified by MMDR search

approach. All weekdays ¢ (Mon., Tue.,Wed., Thu. and Fri.) are
tested for discovering values of parameters s and .

5 75.92% This model exploits parameters prompted by rules discovered
by MMDR. Performance 75.92% is fully consistent with
MMDR performance (70% and 84%, respectively, correct up-
down and down-up forecasts).

The most significant advantage of the first order methods and MMDR, in
particular, is that they can forecast directly the sign of the difference in-
stead of the value as ARIMA does. ARIMA can generate a sign forecast
using a predicted value. The forecast of a value is more complex and avail-
able data may not fit for value forecast. The value forecast can be inaccurate
and statistically insignificant, but the forecast of the sign can be accurate and
statistically significant for the same data.

A similar problem exists for neural networks. Chang and Wagner [1996]
noted that their individual neural networks were capable of sign forecast, but
not for the forecast of the absolute magnitude. “Research results demon-
strated that individual networks were able to predict bond direction much
better than the magnitude of the price variance. This indicated that the net-
works were capable of matching the frequency and the phase of the actual
bond signal (yield and price), but not the absolute magnitude.” Chang and
Wagner [1996] effectively used this property for the forecast. Rather than
use the exact network output values, a mapping model like formulas (1) and
(2) in Section 2 was developed.

The first-order logic methods allow one to go further. These methods
find y% (the indicator of the sign of the difference) directly without
generating network output y; (see testing hypotheses HI-H4 in Section 3.3).
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6.5. Experiment 2: forecast and simulated gain

Comparison of forecasting performance obtained by use of different
methods in the second experiment is presented in Table 6.3. Data for this
experiment are described in Section 3.8. Table 6.3 shows that MMDR out-
performed other methods.

Table 6.2. Forecast performance of different methods on test data

% of correct sign (up/down)
Method forecast of SP500C

1995- 1997- Average

1996 1998* 1995-1998
Risk Free (3%) N/A N/A
Neural network 1 (with preprocessing) 68% 57 62.5%
Rules extracted from NN 1(indirect estimate) <68% <57% <62.5%
Decision tree (Sipina with C4.5 simplification) 67% 60% 64%
First-Order logic with probability (MMDR) 78% 85% 81.5%
First-order logic method (FOIL) 50.50% 45.40% 47.95%

* Data for 1998 are used from 01.01.98 to 10.31.98.

Table 6.3. Simulated gain per year for SP500
Method Gain per year in simulated trading (% of initial investment)
1995-1996 1997-1998 Average 1995-1998

Adaptive Linear 21.9 18.28 20.09
MMDR 26.69 43.83 35.26
Buy-and-Hold 30.39 20.56 25.47
Risk-Free 3.05 3.05 3.05

Neural Network 18.94 16.07 17.5

The most interesting is comparison of the MMDR with the Buy-and-
Hold (B&H) strategy. B&HT strategy slightly outperformed MMDR for
1995-1996 (30.39% for B&H and 26.69% for MMDR, see Table 6.4 and
Figure 6.3). On the other hand MMDR significantly outperformed Buy-and-
Hold for 1997-1998 (43.83% for MMDR and 20.56% for B&H.)

6.6. Experiment 2: analysis of performance

Consider the reasons for different returns. Figures 6.4 and 6.5 show the
dynamics of SP500. During 1995-1996 SP500 has had almost a linear
growth trend (see Figure 6.4), but for 1997-1998 this was not the case (see
Figure 6.5). It is easy to show that B&H is nearly optimal for such data.
Therefore, getting a return close to that given by B&H means that MMDR is
also close to the best return (26.69% of MMDR gain and 30.39% for B&H,
Table 6.4).
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Figure 6.3. Comparison of methods in simulated trading SP500 (test data 1995-1996)
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Figure 6.4. SP500C (1995-1996)

For 1997-1998, the situation is significantly different. SP5S00 has had
much more volatility for 1997-1998 than for 1995-1996. This data constitute
a much harder test for a buy-and-hold strategy. Obviously, buy-and-hold
does not deliver the maximum return for such data. Buy-and-hold does not
have a mechanism to adapt to a new trend, but MMDR has these capabili-
ties. Therefore, MMDR use current information effectively applying appro-

priate discovered rules. Actually, these capabilities yielded a significant gain
(43.83% per year).
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Figure 6.5. SP500 (1997-1998)

6.7. Conclusion

During many years first order logic methods were applied for other areas
outside of finance such as ecology, medicine, drag design, and engineering
[Russell, Norvig, 1995; Dzeroski, 1996; Mitchell, 1997, 1999]. Computa-
tional experiments presented in mis chapter show that first-order logic data
mining methods are able to discover regularities in financial time series.
These financial tasks present a serious challenge for all learning methods
[Freedman et. al, 1995].

The target variable (stock) was predicted using separately SPS00C and
the history of the target stock. MMDR outperformed in accuracy of sign
(up/down) prediction such methods as neural networks, decision trees and
benchmark relational method -- FOIL (Section 4.7).

Active trading strategy based on discovered rules outperformed a buy-
and-hold strategy and strategies based on several ARIMA models in simu-
lated trading for test data 1995-1996. An ARIMA model constructed using
rules discovered by MMDR had shown the best performance among tested
ARIMA models.

Relational data mining based on inductive logic programming and first-
order logic has several important advantages known from a theoretical
viewpoint. Presented computational experiments with simulated trading of
SP500C have shown these advantages for real financial data. A trading
strategy based on a relational data mining method (MMRD) outperformed
on average the trading strategies based on other methods such as backpropa-
gation neural network or simple linear adaptive method. It also outper-
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formed benchmark trading strategies such as risk-free and buy-and-hold
strategies. These experiments show that the use of relational data mining
methods can benefit financial applications. Combined usage of SPS00C,
target history, DJIA and other indicators can produce regularities that are
more powerful and forecast better.

Relational data mining methods have unrestricted capabilities for com-
bined use of indicators, which are needed for real trading systems. Moreo-
ver, relational methods provide nearly unlimited capabilities to formulate
and test hypotheses, because of the power of the first-order logic languages.
The class of hypotheses H4 already has shown advantages over hypotheses
tested in other methods. However, this class of hypotheses represents only
the very first step in predicate and hypothesis invention in finance. An inten-
sive growth of a new area of research and applications of relational methods
is expected in coming years [Mitchell, 1999].



Chapter 7

Fuzzy logic approach and its financial applications

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.
Albert Einstein

7.1. Knowledge discovery and fuzzy logic

In this chapter, fuzzy logic is presented as a part of decision-making pro-
cesses in finance. Three basic types of decision-making methods are used in
applications:

1. Model-based;
2. Data-based;
3. Expert-based (“expert mining”).

The model-based methods are usually associated with a known model
and solid theoretical background, which is typical for physics. This way of
modeling is the most attractive, but it does not contain much reliable knowl-
edge outside of the hard sciences.

Data-based methods cover tasks without a model, but with sufficient
training data to discover hidden regularities. These methods include classi-
cal interpolation methods (polynomial interpolation, spline functions,
piecewise linear interpolation, etc.) and data mining methods (neural net-
works, decision trees, nearest neighbors, and so on).
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“Expert mining” methods cover decision-making tasks without a
model and without sufficient training data, but with known or extract-
able expert linguistic rules. Fuzzy logic methods fit these tasks very well.

Unfortunately, there is no way to know in advance if the training data are
sufficient to choose a data-based or expert-based method. Usually, it be-
comes clear only after testing with large independent test data or several
attempts to use the system. In [Mouzouris, Mendel, 1996] it was shown that
fuzzy linguistic information becomes less important after enlarging the
training data set.

Furthermore, there are many intermediate tasks with some training data
and some expert rules. Such training data can be insufficient or corrupted
and expert rules can also be insufficient or corrupted. These mixed cases
require mixed (hybrid) approaches. In particular, the neuro-fuzzy approach
combines data-based and expert-based approaches (see Chapter 2 Section
9). Specifically in finance, fuzzy logic is combined with neural networks.
The fuzzy logic (FL) mechanism serves for “expert mining” and the neural
network (NN) mechanism serves for data mining in fuzzy-neural hybrid
systems. Typically these studies resulted in faster and more accurate learn-
ing of a neural network [JCIF, 1994]. Two major ways of combining fuzzy
logic and neural networks parts in hybrid systems are presented in Figure
7.1. The first begins from the top left block in Figure 7.1. It adjusts inputs
and parameters of neural networks with expert information. It is well
known that neural networks are very sensitive to initial weights and nor-
malization of input data. Fuzzy logic helps to rationalize this step of neural
networks. Then neural networks discover regularity on the data and rules
can be extracted from neural networks. For example, instead of entering into
a neural network the federal reserve discount rate (%), we can enter this rate
as a set of new variables in categories such as very accommodative, accom-
modative, tight, and very tight. In this way, expert information will be avail-
able to the neural networks. They are much more representative than the
original variable discount rate. An alternative way would be to keep only
one new variable, e.g., accommodative with different degrees. This will
make neural networks smaller and faster [Von Altrock, 1997].

The second way begins from the bottom left block in Figure 7.1. It pro-
duces a preliminary set of rules using expert information to initialize the
structure of neural networks. It is well known that neural network’s output
is also very sensitive to its structure. Fuzzy logic helps to rationalize this
step of neural networks. The further steps are the same in the first way--
neural networks discover regularity on the data and rules can be extracted
from neural networks. Similarly, fuzzy logic can be combined into a hybrid
system with other data mining tools, not only neural networks. In Figure 7.1,
fuzzy logic fulfils an important but auxiliary function. The actual knowledge
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discovery engine is a neural network. In the opposite approach, their func-
tions are swapped -- fuzzy logic serves as an actual knowledge discovery
engine and a neural network provides an auxiliary service. This approach is
depicted in Figure 7.2. Steps for implementing knowledge discovery based
on fuzzy logic are presented in Figure 7.3.

| Fuzzy logic tool l
* Discovered
?&T&a’m knowledge in
. > the form of the
data, weights ::t":ﬂ " trained neural
il p{ network
Rulgs ) >
preliminary
debugged *
using fuzzy Inference of
logic decisions
+ from the
- trained neural
Fuzzy logic tool network

Figure 7.1. Hybrid neuro-fuzzy approach in knowledge discovery

Fuzzy logic tool

Rules preliminary Neural Discovered Knowledge,

debugged using  |[— | network —= | (Tuned fuzzy sets,

fuzzy logic tool FL operations and rules)
Inferring decisions using
FL inference and rules

Figure 7.2. Hybrid fuzzy-neuro approach in knowledge discovery

These steps can be implemented in two ways:

— Coordinating inputs and outputs, i.e., the output of one step matches
the input of the next step.

— Coordinating contents of steps and their inputs and outputs, i.e., opera-
tions in different steps are consistent.
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The coordination of inputs and outputs is much simpler to implement than
coordination of contents. However, without coordination of contents, the
resulting rules often are much less coherent and require more work to tune
them than if the steps have been coordinated from the very beginning. For
instance tuned rules can become uninterpretable [Pedrycz, Valente, 1993].

1.0btaining rough knowledge from an expert (preliminary
concepts, statements and rules in linguistic form)

y

2.Augmenting linguistic concepts and rules with numerical
indicators (membership values and functions)

.
3.Selecting the fuzzy inference mechanism
(operations and defuzzification procedures)
.
L4.Tes!ing and debugging design interactively with an expert |
+
5.Tuning extracted rules using available data and different methods such
as neural networks, genetic algorithms, second interpolation and so on
.

6.Inferring decisions using discovered knowledge
(in the form of fuzzy logic rules).

Figure 7.3. Knowledge discovery based on fuzzy logic

Losing meaningful interpretation of rules means losing one of the main
advantages of the fuzzy logic approach in comparison with the “black box”
data mining and forecast. Below several examples are presented to illustrate
the importance of the coordinated approach. Then a mechanism to imple-
ment these steps in a coordinated way based on concepts of context
space and the second interpolation is suggested. Description of the ap-
proach consists of six sections (Sections 7.2 through 7.7). In Section 7.2, we
review mathematical principles for modeling “human logic under uncer-
tainty” comparing probabilistic, stochastic and fuzzy logic approaches.
Then in Sections 7.3 and 7.4 basic concepts of fuzzy logic are introduced.
Sections 7.5-7.7 are devoted to constructing coordinated contextual fuzzy
inference using concepts of context space and second interpolation. The
context space concept addresses coordinating steps 1,2 and 3. The second
interpolation addresses coordinating steps 4 and 5 listed in Figure 7.3. Sec-
tion 7.8 describes financial applications of fuzzy sets.
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7.2.  “Human logic”’ and mathematical principles of un-
certainty

Modern approaches to modeling “human logic” under uncertainty range
from classic probability theory to such newer theories as fuzzy logic, Demp-
ster-Shafer theory, rough sets, probabilistic networks, etc. All such ap-
proaches are oriented to somewhat different contexts. However, the appro-
priate context for a given application often is not clearly formulated, and
thus it is very difficult to (a priori) select one of the approaches in favor of
another in many situations. Table 7.1 illustrates differences between sto-
chastic and lexical/linguistic uncertainty informally using examples from
[Von Altrock, 1997] and [Cheeseman, 1985]. Expert-based decision making
typically is inferred from uncertain lexical/linguistic statements like “We
will probably have a successful financial year” [Von Altrock, 1997] (see
Table 7.1, statement 2). Having several such uncertain statements, an infer-
ence system should be able to produce a decision. Actually, the challenge is
that the system should mimic human decision and evaluation processes in
a mathematical model. Experimental research did not confirm initial ex-
pectations about modeling human logic using fuzzy logic based on min and
product operations, e.g., [Thole, Zimmerman and Zisno, 1979; Kovalerchuk,
Talianski, 1992]. Therefore, ad hoc tuning became common [Kosko, 1997;
Nauck et al., 1997; Von Altrock, 1997].

This made fuzzy logic theory somewhat different from probability the-
ory, where no one tunes in ad hoc way definitions of fundamental opera-
tions such as union and intersection in the course of a particular study. Nu-
merous debates can be found in the literature [e.g., Cheeseman, 1986; Du-
bous, Prade,1990; Hisdal, 1998; Kovalerchuk, 1996a] about relations be-
tween fuzzy logic and probability theory Fuzzy Logic vs. Probability The-
ory. “Especially people working extensively with probability theory have
denied the usefulness of fuzzy logic in applications. They claim that all
kinds of uncertainty can be expressed with probability theory...Stochastic
uncertainty deals with the uncertainty of whether a certain event will take
place and probability theory lets you model this. In contrast, lexical un-
certainty deals with the uncertainty of the definition of the event itself.
Probability theory cannot be used to model this, as the combination of sub-
jective categories in human decision processes does not follow its axioms”
[Von Altrock, 1997, p.25]. The same author argues that stochastic uncer-
tainty and linguistic uncertainty are of different nature.

An alternative view on the possibility to model linguistic uncertainties
using the probability theory are presented in Hisdal [1998] and some other
publications. We summarize arguments from various discussions in Table
7.2 and comment on them below.
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Table 7.1. Comparison of stochastic and linguistic uncertainties

Feature Stochastic uncertainly Linguistic uncertainty

Examples of statements | Statement 1: “The probability | Statement 2: “We will pro-
of DJIA to be between 11000 | bably have a successful
and 11100 on June 1*is 0.7” | financial year” [Von Al-

trock, 1997].

Statement 3: "It is possible to | Statement 4: “It is possible
put n passengers into that shareholders will be
Carole's car" [Cheeseman, satisfied with the mutual
1985] fund performance”

Clarity of event defini- | Clearly defined events: Not clearly defined events:

tion “DIJIA will be between 11000 | “successful financial year”,
and 11100 on June 1* “, “satisfied shareholders of
“put n passengers into the mutual fund”
Carole's car”

Exactness of resulting High Low

probability

Importance of back- Relatively low High

ground of a person

making an evaluation

Type of concept Objective Subjective

Source of uncertainty Occurrence of event Imprecision of human lan-

guage

Let us begin analysis from the statement in Table 7.2 that stochastic and
lexical uncertainties have a different nature and, therefore, require different
mathematical models. There are numerous models applied to objects of a
different nature, e.g, hydrodynamics and aerodynamics. In ancient time
people were able count three stones, three leaves, three trees, but it took a lot
of time and effort to come to an abstract concept “three”. Note that today we
use very different physical techniques for counting entities of different na-
ture: stars in the galaxy, mushrooms in woods and bugs in software. How-
ever, it does not change the arithmetic with them.

Therefore, the differences in the nature of the entities and stochastic and
lexical uncertainties do not mean automatically mat unified mathematics
with them is impossible. It is true that the probability theory has an origin in
stochastic uncertainty as a theory of chances and frequencies back in the
18th century. Nevertheless from 1933 when A. Kolmogorov published an
axiomatic probability theory [Kolmogorov, 1956, English reprint], the prob-
ability theory moved onto much more abstract level. Actually currently,
there are two areas:
— abstract probability theory as a part of mathematical measure theory
and
— mathematical statistics as an area dealing with stochastic uncertainty in
the real world.
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Table 7.2. Comparison of Extreme Probabilistic and Fuzzy Logic positions

Probabilistic Position Fuzzy Logic Position

All kinds of uncertainty can be expressed Stochastic and lexical uncertainties have

with probability theory. different nature and therefore require dif-
ferent mathematical models.

Probability theory can model stochastic Probability theory can model only stochas-

uncertainty, that a certain event will take tic uncertainty, that a certain event will take

place. place.

Probability theory can model lexical un- Probability theory can not model lexical

certainty with the uncertainty of the defi- uncertainty with the uncertainty of the defi-

nition of the event itself. nition of the event itself.

Fuzzy logic may produce useful results, Fuzzy logic often produce useful results
but they currently are based upon weak
foundations.

Combination of subjective categories in | Combination of subjective categories in
human decision processes does not follow | human decision processes does not follow
axioms of fuzzy logic theory. axioms of probability theory.

These two areas should not be mixed. Mathematical statistics matches sto-
chastic uncertainties with abstract probability theory, but it does not pro-
hibit matching other linguistic and subjective uncertainties with the ab-
stract probability theory. This is actually done with development of subjec-
tive probability theory, e.g., [Wright, Ayton, 19%4]. Moreover, a prob-
abilistic linguistic uncertainty theory was developed [Hisdal, 1998; Ko-
valerchuk, Shapiro, 1988; Kovalerchuk, 1996a] inspired by a very produc-
tive concept of linguistic variables developed by Zadeh [1977]. This third
approach switches the focus from discussing differences in nature of uncer-
tainty to formalizing contexts of lexical uncertainty.

The formal construction of probability space was the principal
achievement of probability theory and allowed for the expression of an ap-
propriate context for use with probabilities especially as stochastic uncer-
tainties expressed within relative frequencies. Clearly, context is important
when using linguistic concepts also [Zadeh, 1977] and it is here where fuzzy
sets and membership functions typically are used. Therefore, we argue that
an analog (but by no means an identity) of probability space as an expres-
sion of context is critically important for firmly founding and more ably ad-
vancing the theory and use of fuzzy sets.

For at least two centuries, probability calculations were made without a
strict context base. Obviously, many mistakes occurred as a result of such
"context-free" calculations of complicated probabilities, and many results
were debated. Without more clear and strict contextual bases, it is impossi-
ble to properly verify or falsify such results. Currently, the situation for
"non-probabilistic inference" (fuzzy logic, et al.) is quite analogous to the
one that probability theory was in prior to Kolmogorov's "corrective medi-
cine" which introduced the concept of probability space. That is, fuzzy logic
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may often produce useful results, but they currently are based upon weak
foundations. Below we present a way to strengthen those foundations.

L. Zadeh [1988] supposes that inference under linguistic uncertainty
("lexical imprecision”) is precisely the field in which fuzzy logic can and
should be appropriately and effectively employed. P. Cheeseman [1985,
1986] uses conditional probabilities and probabilistic measures for specific
kinds of propositions, and Z. Pawlak, et al.[1988] use lower and upper prob-
abilistic approximations as generalizations of rough sets to work with lin-
guistic uncertainties.

The main idea of Cheeseman's interpretation is demonstrated in the fol-
lowing: The fuzzy logic “possibility distribution” is just the probability as-
signed to each of the propositions — “it is possible to put n passengers into
Carole's car” -- even though, for some values of #, there is considerable un-
certainty (i.e., the probability is not close to either 0 or 1) [Cheeseman,
1985]). However, Cheeseman did not construct any exact probability space
for his example. Therefore, in these terms, several questions must be an-
swered: what is the reference set (set of elementary events) for the needed
space? How can we obtain the reference set, probabilities of its elements and
their combinations? What are the appropriate distribution and density func-
tions?

In response to Cheeseman, Dubois & Prade [1990] draw attention to
these weaknesses. That is, they emphasize that in many Artificial Intelli-
gence applications, for example, it is not realistic to find answers for some
such questions. Dubois & Prade do not debate Chessman’s probabilistic ap-
proach; they just assert that in many real cases we have no knowledge
about the components of a complete probability space. This may suggest
that the fuzzy logic theory addresses this problem.

It is our contention that the situation is more complicated. For instance,
we may have sufficient data to construct probability spaces, but fuzzy logic
Membership Functions (MFs) could still be needed. In our context space
approach, MFs are not equivalent to probability distributions. Thus, we
clearly do not agree with Cheeseman that the concept of MF always would
be useless, whenever there are fully correct and required probabilities
available. On the other hand, we disagree with a “dynamic approach”,
which motivates the concept of and need for MFs by dynamic changes in,
and/or absence of, a complete probability space. Thus, context spaces for
linguistic concepts reduce the apparent contradictions between the already
debated approaches of Cheeseman vs. Dubois & Prade.

More specifically, context space is considered as a class of connected
measure spaces represented correctly and compactly by MFs. Here then, an
MF is not a probability distribution, but each separate value of m(x) is a
probability. That is, an MF is viewed instead as a 'cross section'' of
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probability distributions [Kovalerchuk, 1996a]. For instance, each of
membership functions my, e(X), Myegiumrae(X)s Myign raie(X) are not prob-

ability density functions with respect to x, but their cross sections for x=0.04
(4% rate) could be a probability density function foes(r) with respect to r,

where 1 is a linguistic term, re {low-rate, medium-rate, high-rate}:

Sumyg g4=fo 04(low-rate)+f ps(medium-rate)+ fj ps(high-rate)=1,

where £y p4(low-rate)=myoy.caie(0.04), foos(medium-rate)=mmegium-rate(0.04) and
fo.0a(high-rate)=mp;gn.r(0.04). Such an interpretation is acceptable for many
fuzzy-inference decisions; indeed, experts often construct such "exact com-
plete context spaces' (ECCSs) with sum,=1 informally for specific prob-
lems. Thus, we argue that the description of linguistic context, in a natural
way, cannot be achieved with the use of single probability spaces alone.
Each interest rate x corresponds to its own small probability space over the
set of linguistic terms like A={low-rate, medium-rate, high-rate} [Kovaler-
chuk, 1996a].

7.3. Difference between fuzzy logic and probability theory

Figure 7.4 presents interpreting mechanisms available in classical
probability and fuzzy set theories to match these theories with real world
entities. The major theoretical concept of probability theory to be interpreted
is the concept of probability p(x) and the major theoretical concept of
fuzzy logic to be interpreted is the concept of membership function m(x).
Both concepts measure uncertainty of real-world entities. Interpreting
mechanisms should also interpret operations with p(x) and m(x) as meaning-
ful operations for real-world entities.

Level 1 Formal Formal
gorma)l mathematical Ipmb&hili!y theory fuzzy logic theory
" / \ / ] \

Level 2 (mechanism| Mathema- Subjective Fuzzy Test of Heuristic
connecting formal |tical probability “statistics” | | Bellman- practice
theory with realty) | statistics theory Giertz axioms
Level 3 ! ! i l 1

Real world tasks ]

(Real world) |

Figure 7.4. Mechanisms for acquisition probabilities and membership functions
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An interpreting mechanism should set empirical procedures for
obtaining values of p(x), m(x) and meaningful operations with them. Tech-
nical details of these procedures are not critical but their context dependen-
cies and justification are of critical importance. Heuristic practice shown in
Figure 7.4 usually is “context-free” with little justification, which means that
ad hoc tuning is necessary.

Context dependence of empirical procedures means that the value of m(x)
is assigned in a co-ordination with assigning values of m for other entities
Y,Z,... - M(Y), m(z), ....

Context independence of computed operations means that:

m(a) & m(b) = f(m(a), m(b)), m(a) v m(b) = g(m(a), m(b));

i.e., the operations are functions of only those variables m(a), m(b). For in-
stance, the most common operations in fuzzy logic min and max repre-
senting AND and OR, respectively, are context independent:

a& b=min(a,b), avb=max(a,b)

where x = m(a), y = m(b). These operations are also called truth-
functional [Russell, Norvig, 1995]. Note that in contrast in probability the-
ory, & operation is not truth-functional, because

p(a&b) = p(b)p(a’b),

where the conditional probability p(a/b) is a function of the two variables
(a,b), and the p(b) is a function of just one variable. Thus, probability
p(a&b) is context dependent. When we speak of p(a/b), b is a context for
a; if b changes, so does the conditional probability. (For more details, see
Gaines [1984] and Kovalerchuk [1990]).

7.4. Basic concepts of fuzzy logic

A fuzzy set and membership functions. We begin from an example.
The interest rate 0.02 is considered as a prototype for “low interest rate” and
0.06 is considered as definitely being outside of the “low interest rate” set of
rates. A particular rate (e.g., 0.04) can be compared with 0.02 and 0.06 and
the result can be expressed as a number reflecting expert’s opinion about
degree of membership of 0.04 to the set of “low interest rates”. This num-
ber is called a value of the membership function (MF) m(x) of the fuzzy
set “low interest rate”. Figure 7.5 gives an example of such membership
function.
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Through this chapter, a financial demonstration example from [Von Al-
trock, 1997] is used. In particular, the membership function presented in
Figure 7.6 is extracted from that demonstration. In this way, we show ad-
vantages and disadvantages of usage of fuzzy logic in finance. In particular
Section 7.5 shows the inconsistency of standard “context-free” (truth-
functional) operations. Then context spaces are used to fix this inconsis-
tency.

Let X be a set of all possible interest rates from 0.0 to 1.0. The set of in-
terest rates {x} is called the universeX and x is called a "Base variable".
The support of the fuzzy set is defined as a set of x such that m(x)>0. The
degree of membership m covers the entire interval [0,1], where O corre-
sponds to absolutely no membership in the set, 1 corresponds to complete
membership and 0.5 usually corresponds to the most uncertain degree of
membership.

low interest rate

0.5

-

0.0

0.0 0.2 0.05 0.1 0.15 0.2

Figure 7.5. Fuzzy set “low interest rate” (“low rate”)
Some examples of membership values are presented below:

Mygw.rate(1.0) =0 Myow.rate(0.05) = 0.022  myqyy.rae(0.025)= 0.9
mluw-mte(o-s) =0 mlow-rale(0-04) =0.5 mlow-me(o-oz) =1
Myow-rate(0.06) = 0 Miow-rate(0.03) = 0.72  Myoy.rare(0.01) =1

Fuzzy sets generalize conventional “crisp” sets with only two values, 1
and 0. Formally the pair

<X 3 {rrlI(}\-\f-mte(x):x-‘E X } >

is called a fuzzy set of low rates, ie., to define a fuzzy set we need three
components: linguistic term (“low rate”), universe (X=[0,1], 1., all possible
rates), and a membership function. Fuzzy logic combines fuzzy sets to infer
conclusions from fuzzy logic expressions using membership functions. For
example, fuzzy logic assigns a truth value to the expression "the interest rate
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0.03 is low AND the interest rate 0.24 is low". It is based on the expression
"the interest rate 0.03 is low" with the truth value (.72 and the expression
"the interest rate 0.024 is low" with the truth 0.82.

Linguistic Variables. The most productive concept of fuzzy logic is the
concept of linguistic variable [Zadeh, 1977]. Linguistic variable is a set of
fuzzy sets defined on the same universe X for related linguistic terms like
low, medium, high. See Figure 7.6 for membership functions for these terms
[Von Altrock, 1997].

At first glance, any related fuzzy sets can and should be used to create a
linguistic variable. However, assigning membership degree m,,qq.,(0.03) for
rate 0.03 without coordinating this value with already assigned value
m,,,,(0.03) would be non-contextual. In Figure 7.6 it is not the case, here
mmedium(0‘03)= 1 _mlow(0’03)'

low medium high

0s |

0.0

0.0 0.02 0.05 0.1 0.15 02

Figure 7.6. Membership functions “low”, “medium”, “high” for linguistic variable “interest
rate”

Fuzzification. The process of computing values of membership func-
tions of fuzzy sets for given values of base variables is called fuzzification.
Example 1. Let "interest rate" = 0.03. The result of fuzzification for 0.03

could be (Figure 7.6):

low truth value =0.72  (myow((0.03)=0.72)

medium truth value =028  (Mpedium(0.03)=0.28)

high truth value=0.0  (m;;1(0.03)=0.0)
Example 2. Let "Trade fee" = 0.015. The result of fuzzification for 0.015
could be (Figure 7.7):

low truth value = 0.78

significant truth value = 0.22

The term set {low, medium, high} for the linguistic variable “interest rate”
does not allow us to express linguistically an interest rate of 0.03. The clos-
est term is “low” (0.72). A larger term set, which will include the term “al-
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most low rate, just slightly greater” can be developed. In this way, 0.03 can
be represented by a specific linguistic term. Otherwise fuzzification will rep-
resent the same idea numerically as three numbers (0.72, 0.28, 0), respec-
tively for low, medium and high rates. The result of fuzzification is used as
input for the fuzzy rules.

Fuzzy Rules. Background knowledge of the system is expressed in
fuzzy logic in the form of “If-Then” rules. These rules connect linguistic
terms of several linguistic variables to infer decision (outputs). The If-part
of arule is called the precondition or antecedent and the Then-part is called
conclusion or consequent. The If-part can consist of several preconditions
joined by linguistic connectors like AND and OR.

low significant

05

0.0

1 | 1 1
0.0 0.035 0.05 0.075 0.1

Figure 7.7. Linguistic variable “trade fee”

Fuzzy Rule Inference. Let us begin from examples.
Rule I:
IF "interest rate” = low AND "trade fee" = low
THEN "environment (trade environment) = positive
Rule 2:
IF "interestrate”" = low AND "trade fee" = significant
THEN "environment”= positive
Rule 3:
IF "interestrate" = high AND “trade fee" = significant
THEN "environment” = negative
Rule 4:
IF "interest rate" = medium AND "trade fee" = significant
THEN "environment” = indifferent

These rules use the AND operator in their IF-parts. Consider a trade in
which the interest rate is 0.03 and the trade fee is 0.015. Fuzzification of this
data would establish for rule 1 that my,, ieresrae(0.03)=0.72 for the first pre-
condition and m,,. ..(0.015)=0.78 for the second precondition.
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Fuzzy rule inference consists of two parts: aggregation (computing the
truth value of the IF-part of each rule) and composition (computing the truth
value of the conclusion of the set of rules).

The typical fuzzy logic assumption in aggregation is truth-
functionality: “the truth of complex sentences can be computed from the
truth of the components. Probability combination does not work this way,
except under strong independence assumptions” [Russell, Norvig, 1995]
(see also Section 7.3). Several operators were suggested for combining
components, for instance, Min and Product are used as AND operation.

The minimum (MIN) operator used to compute the truth value of the en-
tire condition in rule 1 produces the following truth value:

MIN {Truth value ("interest rate" = low), Truth value ("trade fee" =low)}
=MIN{0.72,0.78} = 0.72.

Similarly, truth value of rule 2 can be calculated:

MIN {Truth value ("interest rate" = low), Truth value ("trade fee"
=significant) }= MIN{0.72,0.22} = 0.22.

If more than one rule produce the same conclusion (e.g. "environment" =
positive), the maximum of truth values of the conclusions is selected for
all further processing. This is actually representation for logical OR opera-
tor. Example:

Rules 1 and 2 yield the same result for "environment", but with different
truth values of the conditions:

Mposiive-environment(0.03, 0,015) = min(0.72,0.78)=0.72  (rule 1)
Miposiive-environment(0-03, 0,015) = min(0.72,0.22)=0.22  (rule 2)

The composition step will produce the truth value MAX(0.72,0.22)=0.72 for
the pair ((0.03, 0.015) of interest rate and trade fee. The above used combi-
nation of max-min operators is called MAX-MIN inference.

Another standard for fuzzy logic is MAX-PROD. This method produces
the following output for the previous example:

mpositi\.re.em.rjmmgm(o-o3, 0.015) . 0.?2‘0.78_'—.0.56 (1'11]6 1)
Mpositve-environment(0.03, 0.015) = 0.72*0.22=0.16 (rule 2)

The third operation is called BSUM (bounded sum). The result is equal
to 1, ifthe sum exceeds 1, else it is equal to the sum. For the same example
this method delivers:
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mpogi[ive¢nvimnmem(o.03, 0.015) = BSUM(0-72,0.78)=1 (l’l.l]e 1)

Many practical applications have shown that these inference methods can be
used more or less interchangeably, depending on which defuzzification
method is used [Von Altrock, 1997]. This empirical observation has some
theoretical explanation [Kovalerchuk, Dalabaev, 1994]. It was found under
some assumptions that different inference methods produce close final or-
derings of alternatives (x,y) with a difference about 10%. In the example
above, we need to order alternatives as a pair (interest rate, trade fee) with
respect to the ordering relation “better trade environment” (<iade-enviomment)-
For 1instance,

(0°06’ 002) <I:mdc-environm=n1 (003; 0015)

means that (0.03, 0.015) corresponds to a better trade environment than
(0.06, 0.02).

Fuzzy Operators. All listed operators are truth-functional as we already
mentioned. However, in real financial and many other applications, this as-
sumption may not be true. Therefore, several other operators were sug-
gested. These operators like the GAMMA operator have adjustable parame-
ters to fit a particular decision-making task. These operators are called com-
pensatory operators. GAMMA and MIN-AVG belong to this class of op-
erators. For instance, the following compensatory operator g(x,y) can be
considered:

Gu,p(anFa*MIN (X$Y)+B*MAX(st)

Linguistic result design. At the end of fuzzy rule inference, all output
variables are associated with a fuzzy value. To exemplify this, the following
truth values are assigned to the trade environment:

Mpogitive-trade-environment(0.03, 0.015) = 0.72

Mindifferent-trade-environment(0.03, 0.015) = 0.2
mNegalive—tme-envimnment(o-O3s 0015) =0.0

Next, an extended set of linguistic terms can be developed to capture lin-
guistically trade environment expressed with three numbers (0.72; 0.2; 0).
There can be the term “positive, but slightly indifferent trade environment”.
Rule Definition

There are two major stages in defining rules:
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— formulate pure linguistic rule (prototypes) and
— formulate the prototype as a fuzzy rule.

Example. Consider a statement:

IF the trade period has low interest rate and low trade fee
THEN the trade environment is positive.

This can be formulated as a fuzzy rule:

IF "trade rate" = low AND "trade fee" = low
THEN "environment" = positive.

Rule development is an iterative process, which involves tuning rules and
the development of similar rules for other terms. For example, the following
rule could be defined: "IF trade period has medium interest rate and it has
the trade fee higher than the low trade fee then the trade environment is in-
different”. This can be formulated as a fuzzy rule too:

IF "interest rate" = medium AND "trade fee" = significant
THEN "environment" = indifferent”

The next important concept in fuzzy logic is a matrix of linguistic rules
(rule matrix). This matrix is presented in Table 7.3. This matrix is coded
with numbers in Table 7.4. Code low interest rate as 1, medium as 0 and
high as -1. For trade fee use code 1 for low and 0 for significant. For envi-
ronment use 1 for positive, 0 for indifferent and -1 for negative. It seems that
this coding is inconsistent.

Table 7.3. Matrix of linguistic rules

If Then
Interest Rate Trade Fee Environment
Low Low Positive
Medium Low Positive
High Low Indifferent
Low Significant Positive
Medium Significant Indifferent
High Significant Negative

We do not code highest degrees for interest and trade fee with highest

number (1). This is done deliberately. The suggested coding scheme allows
us to keep the meaningful property of monotonicity -- larger numbers
reflects better interest rate, trade fee and trade environment.
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The information from Table 7.4 in visualized in Figure 7.8. Here 11 on
the left side represent the IF-part of rule (the interest rate is low and the
trade fee is low); 01 means that the interest rate is medium and the trade fee
is low. The right lattice in Figure 7.8 shows in each node the IF-part of
rules along with their THEN-part (environment value) too.

Table 7.4. Numerical rule table

If Then
Interest Rate Trade Fee Environment
1 1 1
-1 0 -1
0 0 0
1 0 1
0 1 1
-1 1 0
11 positive environment 111
N PR
0; 1? positive environment 011 101
-11 00 indifferent environment -110 000
N, S o N/
-10 negative environment -10-1

Figure 7.8. Lattice of rules
Another representation of this matrix is given in Table 7.5.

Table 7.5. Rule matrix: relational form

Trade fee
Interest rate 1 (low) 0 (significant)
1 (low) 1 1
0 (medium) 1 0
-1 (high) 0 -1

Defuzzification. Fuzzy rules, in contrast with rules in classical logic,
produce fuzzy output. It can be a set of values of the membership functions
values or a linguistic term. For example, the result could be equivalent to a
complex linguistic statement "Trading environment is mostly positive for
buying, but it is also slightly indifferent for buying". Obviously, program
trade systems or traders cannot interpret such linguistic commands in the
same way as crisp buy/hold/sell signals. In fuzzy logic, membership func-
tions are used to retranslate the fuzzy output into a crisp value. This re-
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translating is known as defuzzification summarized in Table 7.6 [Nauck et
al, 1997; Passino, Yurkovoch, 1998, Von Altrrock, 1997].

Table 7.6. Procedures for defuzzification

Abbre- | Name Algorithm Comment
viation
CoA, Center-of-Area, Compute x such that areas Slow computation
CoG Center-of-Gravity | on both sides of x are equal.
CoM The Center of A weighted mean of the term | Fast, but neglects over-
Maximum membership maxima, weigh- | lapping approximating
ted by the inference results. CoA (CoQG).
CoA Boundary sum variant of Optimized for efficient
BSUM CoA VLSI implementation
MoM The Mean-of- Computes the mean of the
Maximum truth values for the term with
_highest resulting truth value.
MoM BSUM Variant of MoM Optimized for efficient
BSUM VLSI implementation
7.5. Inference problems and solutions

In previous sections, we presented common fuzzy logic methods. These
methods have been shown to be effective in many applications. However,
there are some inference problems in applying these methods. Below we

show:

— typical fuzzy inference problems using a financial example and
— apossible way to solve these problems.
Let us consider rules 1 and 2 from Table 7.3,

rule 1:

IF "interest rate" = low AND "trade fee" = low
THEN "environment" = positive

rule 2:

IF "interestrate" = low AND "trade fee" = significant
THEN "environment" = positive

The last two rules imply

rule 5:

IF ("interest rate” = low OR "interest rate" = medium) AND
"trade fee" = low

THEN "environment” = positive
The following notation is used below for a membership function

ma(R,T) of fuzzy set A. For instance, if A="indifferent trade environment”
then mj,ggren(R,T)=1 means that the membership degree is equal to 1 for
pair (RT) for the fuzzy set “indifferent trade environment”. For simplicity,
sometimes we will omit arguments like (R,T) in the membership functions.



Fuzzy Logic Approach and its Financial Applications 249

Consider some values of interest rate R and trade fee F such that R=0.04
and F=0.01. According to [Von Altrock, 1997] m,,,,(R)=m,.4..(R)=0.5 and
m,,(T)=1, ie., F is definitely considered as low fee and R as something
between low and medium interest rate (see Figures 7.6 and 7.7). According
to rule 5 the environment for pair <R,T>=<0.04,0.01> is definitely posi-
tive, ie.,

mpocitive—environmem(RaT)= 1.

Computation of the m value using traditional fuzzy MIN-MAX inference
(suggested for this task in [Von Altrock, 1997]) produces

mpositive-envimnment(Rs F)= 0.5.

We also obtained similar result (0.51) for inputs 0.04 and 0.01 using Fuz-
zytech software [Von Altrock, 1997]. As was already mentioned, in fuzzy
logic, membership function value around 0.5 is interpreted as the highest
level of uncertainty of the conclusion.

This fuzzy inference conclusion means that there is no assurance that
given R and T fit the positive trade environment. This contradicts rule 5,
which states that the given R and T definitely fit the positive trade environ-
ment. The last one is consistent with both logical inference and intuitive ex-
pectations. In [Von Altrock, 1997] several ways are offered to change re-
sults in the case of such an obstacle. The approach is called “debugging”.
Fuzzytech has a convenient tool for this. However, the problem of debug-
ging of rules is challenging even for sophisticated users. In particular, the
author of the respected Fuzzytech software himself had not debugged the
rules completely before publishing the example with MAX-MIN fuzzy rule
inference [Von Altrock, 1997, p. 217]. This inference actually has caused
the contradiction with logical and intuitive expectations. It shows again that
the problem is not trivial. We used an alternative BSUM defuzzification
available in Fuzzytech. BSUM has produced

MFposilive-enﬁmnment(R-T): 1 .

This output is fully consistent with logical and intuitive expectations. See
also output section in Figure 7.9.

We strongly believe that these difficulties can be effectively avoided not
through error-prone debugging of very heuristic procedures, but by a thor-
ough analysis of context space. This can be performed by designing the
fuzzy system in compliance with recent developments in the second inter-
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polation approach of fuzzy set theory. Below we outline some major con-
cepts of this approach (for more detail see Kovalerchuk [1996]).

Before moving to more theoretical study, let us analyze rules 2 and 4
from the same example. This consideration shows that even if debugging on
the intermediate step has shown consistency of the rules they still may be
inconsistent in a further inference.

Rule 2: IF “interest rate” = low AND “trade fee” = significant
THEN "environment" =positive

Rule 4: IF "interest rate" = medium AND "trade fee" = significant
THEN "environment" = indifferent

Logically these rules produce

Rule 6: IF ("interest rate" - low OR "interest rate" = medium)
AND "trade fee" = significant
THEN “environment”’=indifferent

Given the values of the interest rate R and trade fee F: R=0.04 and F=0.03,
ie., exactly between picks of membership functions for low and medium
interest rates, i.e.,

Miow-interest(R) = Mpegium-interest(R) = 0.5,  Mgignificant-tee(F) = 1.

In this case, F definitely represents a significant fee and R is something be-
tween low and medium interest rate (see Figures 7.6 and 7.7).
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Figure 7.9. BSUM inference
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MF were computed using Min-Max and FuzzyTech software [Von
Altrrock, 1997]. Both computations have produced the same

MFpasitive«environment(RsF)=0-5 .

Then MAX-MIN defuzzification delivered intuitively and logically con-
sistent results for positive and indifferent trade environments separately.
However, joint consideration of positive and indifferent trade environments
produces inconsistent results. Rule 6 actually can be viewed as an OR com-
bination (disjunction) of positive and indifferent trade environments. Ac-
cording to rule 6

MFpositive-or-indil'ferenlenvironmenl(R’F) = l:

but MAX-MIN fuzzy inference can produce only 0.5.

Another inference, which uses BSUM handles this situation correctly.
Nevertheless, it does not mean that BSUM is the right choice. An adequate
analysis should involve a careful study of context. One of the reasonable
alternatives to heuristic debugging is the use of interpolation based on
picks of membership functions and values of output variable for these
picks in three-dimensional space (see Figure 7.10).

* Trade environment

011 111

-
»~ Trade fee

44110

— — —

Interest rate

Figure 7.10. Surface presentation of rules

This idea is illustrated with the same example. Six rules presented in Ta-
ble 7.5 can be converted into points in three-dimensional space. For in-
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stance, 111 means that MF values for interest rate, trade fee and environ-
ment all equal to 1 and that ifthe first two MFs are equal to 1 then the third
should be 1 also. Use axes for the interest rate, trade fee and trade environ-
ment. This also shows the simple surface connecting these points represent-
ing the degree of positive environment for every value of the interest rate
and trade fees not only integer values. This means a defuzzified output is
delivered directly. There are simple formulas to define this surface analyti-
cally. The given surface does not suffer from problems of inconsistency
known for standard fuzzy inference. The surface delivers

MFpositive»environment(RaF)z1a for MFlow—interest(R)zo-S and MFlow fee(F)zo'S ’
see Figure 7.10. Mathematical formalism, detailed justification and discus-
sion of this interpolation method called the second interpolation are pre-
sented in [Kovalerchuk, 1996b] and briefly we present this concept in Sec-
tion 7.7 in this chapter.

7.6. Constructing coordinated linguistic variables

7.6.1. Examples

In Section 7.1, six steps of implementing knowledge discovery based on
fuzzy logic were presented. Below coordinated contextrual implementa-
tion of the first four steps is presented:

1. Obtaining some rough knowledge (rules, statements) in linguistic form
from an expert,

2. Augmenting linguistic concepts, statements and rules with numerical
indicators (membership values and functions),

3. Selecting fuzzy inference mechanism (operations and defuzzification
procedures), and

4. Testing and debugging rules and indicators interactively with an ex-
pert.

Although implementation of these steps is simpler without coordination
of their contents, the resulting rules often are much less coherent. These
rules require more work to test, debug, and tune them than if the steps have
been coordinated from the very beginning. Below several examples illus-
trating the importance of coordinated approach are presented. Then a
mechanism to implement steps 14 in a coordinated way based on concepts
of the context space is suggested.

Example 1 (Inconsistency).
Let the first step (obtaining a linguistic statement) be ended with
statement Sl:
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“A person of age 59 is Almost Old OR Old”.
Then in the second step the linguistic concepts “Almost Old” and “Old” are
augmented with numerical indicators of their truth for age 59:

m(59 is Old) = 0.55,

m(59 is Almost Old) = 0.45,
and the statement S1 is augmented with a numerical indicator of the degree
of its truth:

m(59 is Old OR 59 is Almost Old) = 1.00 (true). %))

Assume also that the third step ends with the standard fuzzy logic max
operation for OR. Using OL for Old and AO for Almost Old, it produces (2):

m(59 is Old OR 59 is Almost Old)=max{OL(59),A0(59)}
=max{0.55; 0.45} = 0.55, )

ie., truth of the statement “59 is Old OR 59 is Almost Old” is very ques-
tionable (truth degree 0.55). Nevertheless, more naturally statement Sl
should be true or nearly true. Thus, steps 2 and 3 produced different results
(1) and (2). Therefore, the fourth step (debugging) is needed, e.g., substitut-
ing max for SUM. Here (1) is supported intuitively and experimentally
[Hall, et al, 1986], reflecting the given linguistic statement: “A person of age
59 is Almost Old or Old”, but (2) is based only on a formal (and not neces-
sarily universal) fuzzy logic definition. The source of the inconsistent out-
put (2) is in implementation of steps 2 and 3 without coordination of
their contents and contexts. Max operation was chosen without analysis of
the results of steps 1 and 2. Unfortunately, this is a standard practice in
fuzzy inference. In other words, independently defining membership func-
tion m and OR operation as max created inconsistency. The negative aspect
of debugging is that it is done ad hoc and no one can guarantee that with
more age concepts such as “Not Old” or “Very Old” a similar problem will
not raise.

The concern is that SUM could be just a first step in debugging and we
can not universally substitute max for SUM. This is confirmed in the next
example.

Example 2 (Case sensitive debugging).
Assume that we have substituted max operation for sum operation in the
debugging of Example 1. Let us consider statement S2:

“A person of age 59 is Almost Old OR Old OR Very Old OR Not Old”



254 Chapter 7

as a true statement (Step 1). Step 2 produced according to the figures in
[Hall, et al., 1986] where:

m(59 is Old) = 0.55, m(59 is Almost Old) = 0.45,
m(59 is Not Old) =0.35, m(59 is Very Old) = 0.06.

Step 3 delivers for statement 2:
OL(59)+AO(59)+NO(59)+V0O(59)=0.45+0.35+0.55+0.06=1.41 (3)
Thus, the truth-value 141 in (3) instead of 1.0 also should be debugged.

Example 3 (Case sensitive debugging).
Step 1. Suppose we need m for the expression E, where E is a condi-
tional (i.e., "if-then") statement such that

IF the age of 32 years is Not Old (NO)
THEN the age of 59 is either Almost Old OR Old.

Intuitively, this statement seems to be approximately true.
Step 2. Hall et al [1986] provide the following experimental values:
NO(32)=0.95, AO(32)=0.04, OL(32) =0.01.
Also we assume from (1) that m(age of 59 years is AO OR OL)=1.
Step 3. The standard logical approach is to consider that E statement
(C = D) is equivalent logically to (not C) v D.
Here, D = {age of 59 years is AO OROL};
and in our context, (not C) = {age of 32 years is AO OR OL}.
This negation differs from a simple negation of {age of 32 years is NO},
i.e., it is not simply {age of 32 years is OL}. For the other context of (not
C), the other set of linguistic terms may take place.

Using the standard max-min fuzzy logic approach (max for OR and min for
AND):

m(E) = m((not C)vD)
=m({age of 32 years is AO OR OL} or{age of 59 years is OL})
=max (m({age of 32 years is AO OR OL},m{age of 59 years is AO OR
OL})
=max (max [m(age of 32 years is AO), m(age of 32 years is OL)],
max[m(age of 59 years is AO), m(age of 59 years is OL))
=max (max(0.04,0.01),max(0.55,0.45))=0.55.
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Therefore, the use max-mix operation gives only a formally "correct" an-
swer (m=0.55) that certainly is NOT intuitively "correct”. The reason for
inconsistency is the same -- max-min operations were selected in step 3
without coordinating with steps 1 and 2. In addition, the use of the sum pro-
duces results, which should be debugged (m>1):

m(E) = m((not C)vD) ‘
=m({age of 32 yearsis AO OR OL} or{age of 59 years is OL})
=sum(m({age of 32 years is AO OR OL},m{age of 59 years is AO OR
OL})
=sum(sum[m(age of 32 years is AO), m(age of 32 years is OL)],sum[m(age
of

59 years is AO), m(age of 59 years is OL)
=sum(sum(0.04, 0.01), sum(0.45,0.55))= sum(0.05, 1.0)=1.05

Analysis of Examples 1-3. Debugging of fuzzy logic operations is needed
in all these Examples 1-3. Example 1 brought us to substituting max for
sum. Truth-value greater than 1 in Examples 2 and 3 can be fixed by sub-
stituting bounded sum for the sum -- BSUM (all values over 1 are cut on the
level 1),

BSUM(x,y)=min(sum(x,y),1).

Our concern 1s that the BSUM may not be the final universal substitution
for max either. The SUM was not the final one after Example 1 was de-
bugged. Examples 2 and 3 required more debugging. The negative aspect of
debugging is that it is done ad hoc and there is no guarantee that with more
concepts such as “not young” and other ages such as 65 a similar problem
will not rise. Examples 1-3 illustrate the coordination problem of linguistic
statements and the third example illustrates coordination problem for rules.
It is also important to note that probability theory does not require a de-
bugging operation in similar situations. This is illustrated in Example 4 be-
low.

Example 4 (Linguistic fuzzy-probabilistic approach).

In this example we apply fuzzy-probabilistic approach to Example 3 -- to
find m(age of 32 is NO AND age of 59 is AO). We operate in the Cartesian
product of the two probability spaces:

{NO, AO, OL}x{AO, OL},

which is equivalent to all pairs
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(NO,AO), (AO,AO), (OL,AO), (NO,0OL), (AO,0OL), (OL,OL).

Then we find membership functions (MFs) of those pairs with the first com-
ponent for age 32 years and the second component for age 59 years.

According to the already cited data from [Hall, et al., 1986]: NO(32) =
0.95, and AO(59) = 0.55. If the given probability spaces are independent,
then:

m(32 is NO AND 59 is AO) =NO(32)*A0(59) = 0.95+0.55 = 0.52.

Cheeseman [1985, 1986] made this kind of supposition in a similar situa-
tion. Thus, under independence assumptions of spaces for ages 32 and 59
years:
m(E) = m((not C)vD)
=m({age of 32 is AO OR OL}OR {age of 59 years is AO OROL})
=[AO(32)+OL(32)]+[AO(59)+OL(59)]-[AO(32)+OL(32)]*[AO(59)
+0L(59)}
= [0.04 + 0.01 + 0.55 + 0.45] - [0.05%1.00] = [1.05] - [0.05]
= 1.00.

This intuitively acceptable output (m(E)=1) does not requires debugging
of standard probabilistic operations for independent events — “+” for OR and
“*” for AND. If the independence assumption is not true, then we should
use conditional probability:

NO(32)* AO(59/ [NO(32)] = 1.00.
Here, AO(S9/([NO(32)] = 1.00)

means that 59 years of age IS "Almost Old", GIVEN THAT 32 years of age IS
"Not Old".

Example 5 (Dependent terms). Let us compute truth-value for state-
ment 4:

B = (age of 32 years is NO AND age of 59 years is AO)
OR (age of 32 years is NOAND age of 59 years is NO)
OR (age of 32 years is NOAND age of 59 years is OL).

Use of standard probabilistic operations under the same supposition of
independence as in Example 4 produces:
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m(B) = (0.95x0.55)+(0.95x0.35)+0.95x0.45)=0.52+0.33+0.42=1.27,

i.e., debugging is obviously needed to get a truth value not greater than 1.
This example shows that a simple substitution of fuzzy operations for
probabilistic operations does not solve the problem of debugging com-
pletely. This substitution as well as previous ones ignores context of steps 2
and 3. Actually the term Not Old can not be considered as independent from
terms Almost Old and Old for age 59 as shown in experiments in [Hall et at,
1986].
Example 6 (Nested, complementary and overlapping linguistic
terms). Below the assumption of Example 4 are used.
Step 1. First, two pairs of term sets are introduced for the ages of 32 years
and 59 years:

T(32)={NO, AL}, T'(32)={NO, NO OR AL},
T(59)={AO, OL}, T'(59)={A0, AO OROL}
Assume that two statements are true

Age of 32 is Not Old OR (Not Old OR Almost Old),
Age of 59 is Almost Old OR (Almost Old OR Old)

For simplicity, NO OR AL will be denoted as NOAL and AO OR OL will
be denoted as AOOL.

Step 2. Let NO(32)=0.95and AO(59)=0.55 as in previous examples. It is
also assumed that

m( age 32 is NOAL)=1,
m( age 59 is AOOL)=1.

We will call T(32) and T(59) exact complete term sets for 32 and 59, re-
spectively, because of these properties. The T(32) and T(59) terms express
distinct concepts and the prime terms in T'(32) and T'(59) express nested
concepts. The set of exact complete terms is the base concept of an exact
complete context space.

Step 3. Select sum to represent OR operation.

The sums for nested T" are more than 1:

m(Age of 32 is Not Old OR (Not Old OR Almost Old))=0.95+1=1.95
m(Age of 59 is Almost Old OR (Almost Old OR Old))=0.55+1=1.55.
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Therefore, debugging is needed for T” to suppress these sums to 1.
Step 4. One way of debugging is to return to max operation:

m(Age of 32 is Not Old OR (Not Old OR Almost Old))
=max(m(age of 32 years is NO),m(age of 32 years is NO ORAL)
=max(0.95,1)=1.

Similarly,

m(Age of 59 is Almost Old OR (Almost Old OR OLd))
=max(m(age of 59 years is AO),m(age of 59 years is AO OR OL)
=max(0.55, 1)=1.

Analysis of Example 5. Now we have obtained a corrupt loop -- to debug
max we moved to the sum and to debug the sum we moved to max again.
This example shows that simple “context-free” debugging trying different
operations helps to solve one problem, but can create another. Therefore,
contextual debugging or in other words, belter contextual designing steps
14 is needed. Contextual debugging here would begin with noticing that the
intuitively incorrect result obtained in Example 5 before debugging is en-
tirely the result of having used "context free" computations. It happened
because of mixing distinct and nested terms in a single context space and
using the same space and term set for different ages (32 and 59 years). In
other words, step 1 generated several statements, which require different
operation for distinct and nested terms. For example, in the statement “A
person of age 59 is Almost Old OR Old OR Very Old OR Not Old” terms
Almost Old and OId are distinct ones, but terms Old and Very Old are
nested. For nested terms, if someone is called Very Old he/she also can be
called Old, i.e., here Very Old is interpreted as nested to Old. This is not the
case for distinct terms Almost Old and Old. We can not say that if someone
is Almost Old he/she is also Old or if he/she is old that he/she is almost old.
Nested terms may require min operation, but distinct terms may require
sum.

In the mixed space with nested and distinct terms, there is no way to
find one “context-free” operation in the process of debugging. Switching
between these operations would be needed. However, this is only a partial
solution. The number of operations and switches can be as large as the num-
ber of statements in the domain. Moreover, if we combine two statements
and they use two different operations, the new combined statement may re-
quire a third operation. Therefore, a context solution would be to analyze
the term space type ifit is a space of nested terms, a space of distinct terms
or a mixture. If the space is nested then use min-max and if space is dis-
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tinct then use sum with some additional context restrictions. If it is a mix
of terms then a transformation of the space to one of the previous types
will be needed. To avoid all these complex problems it would be more natu-
ral to develop a distinct or a nested context space in advance. In the next
section, we discuss known methods of developing these spaces.

Let us produce a space based on nested terms for the statement “A per-
son of age 59 is Almost Old OR Old OR Very Old OR Not Old”. We may
have five nested terms

“Almost Old OR Old OR very Old OR Not Old”
o “Almost Old OR Old OR very Old”
>“Old OR very Old” o “Old” o “Very Old”.

These nested terms are given experimentally only for “Old” and “Very Old”.
Therefore, decomposition of the needed term “Almost Old OR Old OR very
Old OR Not Old” to compute MF can not be done this way, but it works
consistently for “Old OR very Old’:

m(Old OR very Old)=max(m(Old, Very Old))

Also, we can transform the term set from the statement “A person of age 59
is Almost Old OR Old OR Very Old OR Not Old” in to the set of distinct
terms in "exact complete context space (ECCS)".
For nstance, let us consider terms C1-C4:

Cl="Almost Old”,

C2="0ld”,

(C3=“Very Old and not Old” and

C4="Not OId” and not (“Almost Old OR Old OR Very OId”).
Then knowing from THE mentioned experimental study that C1 and C2
form a complete space for age 59 we obtain a meaningful result:

m( “A person of age 59 is Almost Old OR Old OR Very Old OR Not Old”)
=m(“A person of age 59 is Almost Old)+m( “A person of age 59 is Old)
+m(“A person of age 59 is “Very Old and not Old”)
+m(“A person of age 59 is Not Old and not(Almost Old OR Old OR

Very Old”)
=0.55+0.45+0+0

7.6.2. Context space

Examples in the previous section show that the max-min fuzzy logic ap-
proach produces the same result as the "exact complete" context space ap-
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proach if (and only if) nested spaces are accurately constructed with a one-
to-one correspondence to the ECCS.

Thus, whenever natural language terms are mostly nested for a given ap-
plied problem, we should try to construct the complete nested term set (sets)
within the whole context. That is, the entire context should be equivalent to
an ECCS. The correspondence between ECCS and a nested context is close
to correspondence between a density function and a distribution function
in probability theory.

The above examples should suffice to show that probability spaces could
be constructed for the linguistic uncertainties usually given empirically in
situations involving fuzzy sets. Thus, in this regard, Cheeseman’s probabil-
istic position [Cheeseman, 1985, 1986] is justified. We should also empha-
size that this is a typical situation for many applications of fuzzy logic. We
can construct exact complete context space(s) (as in examples, above) with-
out serious problems, and such contexts likely do not change during their
"lifetimes”.

On the other hand, as Dubois and Prade noted [1990], in dealing with
knowledge base problems, it is not uncommon to have to deal with the com-
plete probability spaces. Thus, in such cases, it is often impossible to spec-
ify probability spaces, i.e., they may well be dynamically changing and/or
do not provide a "complete" context. However, it will be important to have
some real examples from knowledge base applications where it is truly im-
possible to construct "complete” context spaces. Such examples would pro-
vide ajustification of the Dubois and Prade “impossibility” position [1990].

Nonetheless, the examples offered in the previous section show that
without specification of "exact" complete context space, many mistakes can
be made in calculating compound membership functions (cf. Examples 2-5
above).

The complete context is of importance and has considerable applied in-
terest for fuzzy inference. The combination of "nested" T'(32) and T(59)
with negation 1s "exact complete”. T(32) introduced in example 5 gives an
intuitively correct result using the favored use of max-min in fuzzy logic.

We certainly can suppose that the sum will be about 1.00 for the offered
T', and thus the "over completeness” of natural language can (and should be)
"corrected" for the given example. Such a correction is especially effective
whenever we construct artificial linguistic variables in fuzzy inference ap-
plications.

Financial applications grant a wide range possibilities to generate new
linguistic variables like those presented in Figures 7.6 and 7.7 for interest
rate, trade fee and related trading environment linguistic variable.

An "over complete" space will be generated if we will use a linguistic
space {NO, AO, OL} for both ages and all pairs:
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{NO, AO, OL}3,x{NO, AO, OL}s

The term Not Old (NO) is redundant for age 59 and term Old (OL) is re-
dundant for age 32.

For "incomplete" spaces, however, we cannot even calculate m for com-
plex expressions because not all of the required components are available.
Furthermore, we should not use the idea of independence [Cheeseman,
1985,1986] simply because we "don't know" what else to assume. In addi-
tion, clearly, we cannot give equal probabilities to additional formal ele-
ments of the space, as was shown by Dubois and Prade [1990].

Let us define concepts of context space more specifically. Consider the
following examples as providing a possible empirical base for context
spaces. These cases were generated from Hall, Szabo, Kandel [1986]. Given
the probability space for the age of 59 years, with additivity [Hall, et al.
1986; Figures 14]:

OL(59) + AO(59)=0.55+0.45=1.00
where:
OL(59) = m(59/01d), and AO(59) = m(59/Almost Old).

That is, OL(59) means that 59 years of age is taken to be "Old", and AO(59)
means that 59 years is considered "Almost Old". Here, the pair {AO, OL}
will be considered as providing a "complete' ('‘exact complete'') context
for the age of 59 years. Let us add a new term Not Old (NO). Then, the
context specified by the triplet (3-tuple) {NO, AO, OL} would be desig-
nated as an "‘over complete'' context, and the context designated by {OL}
would be an "incomplete'' context. Thus, given the following with respect
to the age of 32 years:

NO(32) + AO(32) + OL(32) = 0.95 + 0.04 + 0.01 = 1.00,
NO(32) + AO(32) + OL (32) + VO(32) = 1.00

By definition, the contexts (NO, AO, OL} and {NO, AO, OL, VO}
would be "exact complete context spaces” for the age of 32 years. Finally
according to the figures in Hall, et al. [1986], contexts are incomplete for
ages 18 and 24 years, and are over complete for ages 40, 51, 59,68, 77. For
example,
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OL(59)+NO(59)+A0O(59)+VO(59)=0.45+0.35+0.55+0.06=1.41. “)
More formal definition of a context space is given in [Kovalerchuk, 1996a].

7.6.3. Acquisition of fuzzy sets and membership function

One of the most important problems in fuzzy set theory is the problem of
obtaining appropriate MFs. Currently there are many known ways of ob-
taining MFs; but sometimes they have been a source of misunderstanding.
For example, consider the statement: "Fuzzy set theory does not require the
sum of m values on X to be equal to 1.00". Indeed, for many purposes there
is no problem if this sum exceeds 1.00. Clearly, however, the important
question is what we want to do with m values. For instance, let ma(x) =
0.70, and m,(y) = 0.90; if we only want to conclude that the “degree of be-
lief for x is less than that for y for A to be the case, then there is no problem
with the sum here being > 1.00. How m's are obtained and how we use
them is the critical issue. In this present example, we can use any monotone
transformation of the initial m values with impunity. For example, it could
be that ma(x) = 0.95 and ma(y) = 0.99, or even that mu(y) = 1.20,

However, consider a fuzzy inference that computes the center-of-gravity
(CoQ) to create a defuzzified decision, a procedure that requires the addition
of m values weighted by w, and w,. Now it becomes important to justify
addition and multiplication operations with the available m's; i.e.,

Wxma(X) + Wyma(y).

Of course, the center-of-gravity will differ under any of the various mono-
tone transformations just suggested in the prior example, and now it clearly
is necessary to find a procedure for obtaining values for m that appro-
priately allow addition and multiplication. We suppose that this proce-
dure should be operational, 1.e., close to ideas of Bridgeman's [1927] opera-
tionalism in physics.

Fuzzy statistics [Hall, et al., 1986, Hisdal, 1984] provide several ap-
proaches to the acquisition of MFs. Let's consider the following:

a) Values for specific linguistic statements such as "x is a low rate" are
obtained by asking members of a group to register their agree-
ment/disagreement with the statement. Responses are binary (i.e., "yes" or
"no").

b) Subjects are asked to rate their agreement/disagreement with the
statement on a continuous scale of 0 to 1. Then, using mathematical tech-
niques, statistical characteristics of the group of subjects are computed.
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Values obtained in this way are sometimes referred to as 'fuzzy expected
(average) values' (FEVs).

More exact definitions of the operational approaches for obtaining val-
ues of m's via both "semantic procedures” [cf., Hisdal, 1998] and "modal
logic" [cf., Resconi, et al. 1992, 1993] will be given in the following sec-
tions. We will show that these two approaches, when used in conjunction
with the concept of exact complete context space, will allow for the appro-
priate and effective employment of fuzzy logic in many situations that might
otherwise be highly controversial, at best. Hisdal [1998] introduced seman-
tic operational procedures for defining fuzzy sets. It is necessary here for
at least two persons to participate: The ''knowledge engineer'' (E), who
gives instructions to the subject(s) S (Si, Sy, ...),and every procedure is per-
formed on a set of objects. For example, the "objects" could also be people.
Every semantic procedure must have a reference label set A = {A}. For ex-
ample, A = {young, middle-aged, old}, and the A ;'s are called labels.

Labeling (LB) procedure. In psychophysics, this is a forced- (multi-)
choice procedure.

Example: E instructs S to answer the question '"What is today’s interest
rate?"' by choosing one of the labels -- A = {low, medium, high}. (The
requirement of referring toA pertains to the next three definitions as well.)

Example: E instructs S to answer the question "What is John's age?" by
choosing one of the labels -- A= {A, A2, ..l .oy AL} (The requirement of
referring to A pertains to the next three definitions as well.)

Yes-No (YN) procedure. In psychophysics, this is forced two-choice
procedure.

Example: E asks, "Is today’s rate high?”’ S answers either 'yes" or
'hO".

Example: E asks, "Is John old?" S answers either "yes" or "no".

LB-MU procedure In psychophysics, this is a kind of direct scaling
procedure.

Example: E asks S to specify the "degree' (L) to which each of the la-
bels from A is appropriate for today’s interest rate. That is
my(today)e([0;1],
where my;(today)=myow.int.rae(today), myz(today)=mpegium-int-rare(today) and
m;3(today )=mpigh-inerate(today) ).

Example: E asks S to specify the "degree" (L) to which each of the la-
bels from A is appropriate to John (i.e., my; (John) € [0,1)).
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YN-MU procedure. In psychophysics, this is a kind of direct scaling
procedure.

Example: E instructs S to specify the degree myeshigh-rare(today) € [0,1]
to which the answer ''yes' is correct to the question 'Is interest rate
high today?"

Example: E instructs S to specify the degree myes.young (John) € [0,1]t0
which the answer "yes" is correct to the question "Is John young?"

An alternative way to construct a membership function is to use the mo-
dal logic approach [Resconi, et al,1992]. First, consider a finite universal
set X and a set of propositions

<x,{ eA(x)}>:
where ex(x) is of the form
ea(x): "Given element x is classified in set A",

with x€ X, A € P(X), and P(X) is the power set of X.
Also, let

w; bethe “world”,

vi(ea) be the truth value assigned to the proposition ea for a given set

A€ P(X) in the world w;, and

- T[ea] be the number of worlds in which vi(ea) = T; so, T[e,] =0, T[ex]
=n.
Now, a function m, defined by mA(x) = T{ea)/n, is called a membership
function (MF).

Matching semantic operational procedures and modal logic. Despite
significant differences between the language of semantic operational proce-
dures and modal logic language, these approaches lead to similar member-
ship functions concepts. There are two ways to match these concepts:

1) set up a one-to-one correspondence between subjects, S;in semantic ap-
proach and worlds, w; ,in modal logic approach.

2) set up a one-to-one correspondence between a class of worlds {w;} and a
given subject, S. In the latter case, it is viewed as if a given subject (S) is
providing estimates for different conditions ("worlds"), {w;}. The second
approach was developed in [Kovalerchuk, Berezin, 1993].
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7.64. Obtaining linguistic variables

First, it should be noted that the reference to A pertains to all four proce-
dures defined in the semantic approach. The "novelty" of the critical concept
we are presenting is the requirement that A forms an ECCS; ie., the fol-
lowing property holds for all x from X:

m(e;, (X)) + m(e;,, (X)) ot m(eh (X)) =1.00.

For one approach to finding this kind of set A, see Example 5 in Section
7.6.1 above. Specifically, such an approach allows the LB (labeling) proce-
dure to provide a probability space for each object x. Sometimes, when ac-
tually using the YN (yes-no) procedure, E (knowledge engineer) asks, "Is
interest rate high today?”, without reference to A -- but that produces highly
undesirable results. Consider the following two sets of labels, T and T":

T = {very very low, very low, low, medium, high, very high, very very
high},

T" = {low, medium, high}.

Here, low and high in T and T" are different. So, if E asks: "Is interest
rate high today?", without establishing context term sets T' or T" (i.e., the
A), the results will clearly be non-interpretable (see the examples in Section
7.6.1). Therefore obtaining linguistic variables should consist of the follow-
ing steps:

Step 1. Determine a reference set A.

Step 2. Define initial type of the reference set A -- distinct, nested or
mixed.

Step 3. Correct A to bring it into distinct of nested type.

Step 4. Obtain MFs for all terms of corrected A using semantic or modal
logic operational procedures.

Step S. Define the type of the corrected reference set A, ie., distinct,
nested or mixed.

Step 6. Correct A again to bring it into distinct or nested types repeating
steps 4,5 and 6 until getting an acceptable exact complete context space.

Conclusion. For correct inference under linguistic uncertainty in appli-
cations, it is very useful and necessary to construct exact complete context
or their nested equivalent spaces. Unless one specifies the appropriate, nec-
essary context space in which s/he is working, correct inferential solutions
cannot be clearly arrived at, nor can one establish a clear foundation upon
which to debate the efficacy of the problems under consideration. Further
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development of the approach outlined in this section should deal with addi-
tional requirements on the components of specifiable context spaces.

7.7. Constructing coordinated fuzzy inference

7.7.1. Approach

Six steps of implementing knowledge discovery based on fuzzy logic

were presented in Section 7.1. These steps include:
— Selection and debugging of a defuzzification operator and
— Tuning membership functions of fuzzy operations used in rules.

Often selection, debugging and tuning are done by "blind" optimization.
Several studies have shown the disadvantages of "blind" optimization, in-
cluding neural networks and genetic algorithms [Pfeiffer, Isermann, 1993;
Pedrycz, Valente de Oliveira, 1993]. It was shown that simultaneous optimi-
zation of both Input/Output interfaces and a linguistic subsystem without
integrity constraints can generate meaningless linguistic terms [Pedrycz,
Valente de Oliveira, 1993]. Complicated defuzzification using CoG in-
creases the problems of effective computation [Pfeiffer, Isermann, 1993;
Bugarin et al, 1993, Tilli, 1993]. Our intention is: (1) to eliminate heuristic
procedures in debugging and tuning as much as possible and (2) to sim-
plify the related computations. Elimination of critical heuristic procedures
will help to improve the general design methodology. Simplification of
these procedures will allow more effective implementation of fuzzy infer-
ences, which includes decreasing runtime. In Section 7.5 intuitively unac-
ceptable

MFpositiw:-environment(RaF) =0.5
for trading environment was debugged and acceptable
MFposilive-envimnmenl(R,F) =1

was obtained after debugging. Heuristic debugging in that example con-
sists of trying different fuzzy operations and finally substituting MAX for
BSUM. This trial approach was implemented in FuzzyTech [Von Altrock,
1977]. Even if BSUM debugs MF ysitive-cavironment(R,F) perfectly for given R
and T there is no guarantee that the need tor turther heuristic debugging is
eliminated for other R and T. For that reason, a better way for solving the
problem would be a theoretical justification for a fuzzy operation such as
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sum or BSUM along with their empirical confirmation. This avenue is sup-
ported by the theoretically justified sum for an exact complete context space
(ECCS) discussed in Section 7.6. Therefore, one of the solutions for well-
grounded debugging would be debugging MFs and linguistic variables for
obtaining ECCS instead of heuristically changing an operation. In this
approach, the debugging rules will be needed only for correcting a linguistic
rule table. For instance, in Table 7.7 an expert may figure out that Then-part
“indifferent” should be substituted for “positive”.

Another reasonable alternative to heuristic debugging and tuning is
the use of interpolation based on picks of membership functions and val-
ues of the output variable for these picks. In Section 7.5, we already have
shown that an acceptable MPFpositive-environment(R,F)=1 was obtained after this
interpolation (see Figure 7.10).

Justification. There are two major reasons for using the interpolation: to
make defuzzification intuitively consistent and to simplify the computation
of fuzzy inference. The common in fuzzy logic CoG defuzzification method
produces an intuitively inconsistent wave in the output function [Kovaler-
chuk, 1996b]. There is no meaning for this wave for many applications, in
particular, for the trading environment as a function of R (interest rate) and
T (trade fee). The wave is inconsistent with the intuitive idea of sustained
monotone growth of a trading environment indicator with improvement of R
and T. Even if the wave is small, it is a warning about potential undiscov-
ered problems.

The interpolation shown in Figure 7.10 does not have a wave at all.
Therefore, it is better justified intuitively. Moreover, it is much simpler than
CoG for computation. As we already mentioned this method of interpolation
is called the second interpolation [Kovalerchuk, 1996b].

Debugging MFs and linguistic variables by an expert can be insufficient
and could require the use of training data for tuning fuzzy inference. In
many cases, training data should be generated actively to improve tuning.

Algorithm. The algorithm for debugging and tuning rules based on the
second interpolation and ECCS consists of several procedures:

Procedure 1. Identify Exact Complete Context Space (ECCS) with trian-
gular membership functions (see Section 7.6)

Procedure 2. Construct symmetrical ECCS.

Procedure 3. Identify monotone rules.

Procedure 4. Transform ECCS to meet requirement of monotonicity.

Procedure 5. Generate training data for pick points, 0.5-points and 0-
points of input MFs and linguistic variables in symmetric ECCS.

Procedure 6. Test linguistic rules against training data.

Procedure 7. Tune linguistic rules for matching training data.
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Procedure 8. Interpolate pick points of debugged output MFs of ECCS
(see Figure 7.10).

7.7.2. Example

Below we present main procedures for debugging and tuning based on
interpolation using the same example as in Section 7.5.

Procedure 1. Identify Exact Complete Context Space with triangular
membership functions. The output linguistic variable “trading environment”
presented in Figure 7.11 was designed in the forms of ECCS. It does not
require any additional work to build ECCS.

Also both input linguistic variables “interest rate” (Figure 7.6) and “trade
fee” (Figure 7.7) satisfty ECCS requirements by design. For example, ac-
cording to Figure 7.11 IF “trading environment’=0.3 THEN

M Fmsaﬁw.mdﬂ,,(ﬂ 3)+MFindif-trad-env(0.3 )+MF,,°,,{,;V,..,,¢.€,,.,(O i3 ) =0+0.7+0.3=1

Procedure 2. Construct symmetrical ECCS. The output linguistic
variable “trading environment” (Figure 7.11) and one the input linguistic
“trade fee” were designed with symmetrical slopes, but linguistic variable
“interest rate” does not have symmetrical slopes (Figure 7.6). This variable

is transformed to an artificial scale by one-to-one mapping, where 0.02 is
matched with -1, 0.05 with 0 and 0.1 with 1.

negative indifferent positive
1.0

0.5

0.0

Figure 7.11. Membership functions for linguistic variable “trading environment”

Procedure 3. Identify monotone rules. Tables 7.3, 7.4 and 7.5 and Fig-
ure 7.8 in Section 7.4 already have identified monotonic rules.

Procedure 4. Transform ECCS to meet requirement of monotonic-
ity. Technically, it requires correcting only MFs for “interest rate” linguistic
variable obtained in procedure 2 by rotating MFs as shown in Figure 7.12.
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high medium low

0.5

0.0

1

. 0 1
(0.1) (0.05) (0.02)

Figure 7.12. Transformed membership functions “low”, “medium”, “high” for linguistic
variable “Interest rate”

Procedure 5. Generate training data for pick points, 0.5-points and 0-
points of input MFs and linguistic variables in symmetric ECCS.
For this example, it is assumed that training data are presented in Table 7.7.
Procedure 6. Test linguistic rules against training data.
Training data in Table 7.7 show some difference with originally sug-
gested rules (Tables 7.3 and 7.4). This difference is in brackets in the envi-
ronment column in Table 7.7.

Table 7.7. Training data for numerical rule table

IF-part Then-part
Interest Rate Trade Fee Environment
1 1 1
1 0 -1
0 0 0
1 0 1
0 1 (0)
1 1 0

Procedure 7. Tune linguistic rules for matching training data. Now
one has an option to tune original rules in Table 7.4 and make them consis-
tent with the training data (Table 7.7) if one trusts these training data more
than the original rules.

This is not obvious, because training data can be corrupted by noise. In
this example, we assume that data are really corrupted by noise and Table
7.4 should not be changed for Table 7.7.

Procedure 8. Interpolate pick points of debugged output MFs of
ECCS. The interpolation for rules from Table 7.4 is already presented in
Figure 7.10.
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Difference between
second interpolation and Vi
fuzzy inference | Defuzzified

-0.035=1.3-1.335 2 output function
1 -

—

Negative Indif Positive Trade Environment

/ Fuzzy output parameter
"Trade Environment”
AN

Fuzzy argument “Interest Rate”

0.3

-1 0 1
High Medium Low Interest Rate

Figure 7.13. Output function for exact complete fuzzy sets context for significant trade fee.

Figures 7.13 and 7.14 show projections of that interpolation. The first
projection is for the significant level of trade fee and the second one is for
low trade fee. Both figures show interpolations and CoG output function
with waves.

7.7.3. Advantages of 'exact complete'' context for fuzzy inference

There are several advantages of using the exact complete context space
concept to obtain fuzzy sets and linguistic variables:
— time and memory for input data,
— simple Input-Output function,
— complete set of "If-Then" rules,
— reliability of the output.

Below these advantages are are analyzed using several examples.
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Figure 7.14. Output function for exact complete fuzzy sets context for low
trade fee

Time and Memory for Input Data

Example. As noted earlier, context for output and input parameters often
is represented as shown in Figure 7.15. In Figure 7.15, NL is "negative
large"; NM is "negative medium"; NS is "negative small"; ZR is "approxi-
mately zero"; PS, PM, and PL are similarly abbreviated for the positive
statements. Notice that each x € X has an "exact complete" context. For ex-
ample, for x shown in Figure 7.15:

NM(x) + NS(x) = 1.00;
and, for this x, for all other fuzzy sets,

NL(x) = ZR(x) = PS(x) =PM(x) =PL (x) = 0.
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Figure 7.15. Example of "exact complete" context.

1 NL NM NS ZR PS PM PL

-3 -2 -1 0 1 2 3

Figure 7.16. Partially-overlapping fuzzy sets (incomplete context space)

-3 2 -1 0 1 2 3

Figure 7.17. Overlapping fuzzy sets (over complete context space)

NL(x) and NS(x) can be interpreted as "subjective probabilities” which form
a probability space for a given x. Thus, the first advantage of this is that the
same level of objectivity, stability, and context dependence is achieved here
as in probability theory. The seven membership functions (MFs) shown in
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Figure 7.15 represent all classes of such simple probability spaces. We say
that all seven of these fuzzy sets form context (context space) which we de-
fine more formally below.

Linguistic variables shown in Figures 7.16 and 7.17 have no this prop-
erty, they represent incomplete context space (sum<I) and over-complete
spaces (sum>l).

very accomodative accomodative tight very tight

4 5 8 7 8 9 10 11 12 13 14
Federal resene discount rate (%)

Figure 7.18. Linguistic variable discount rate (mixed context space)

Figure 7.18 represents practical assignment of MFs [Von Altrock, 1997].
This 1s a typical mixed case. For example for rates under 5% and from 13 to
14% the space is incomplete, from 7% to 9% it is over complete and for
11% it 1s exact complete context space.

A second advantage of this approach is the very compact representation
of the class of probability spaces needed. Let us illustrate this point. Let X
be a set of 100 grades (elements); now, instead of 100 separate probability
spaces with probabilities of two elementary events each, we simply use
seven MFs. In the first case, we would have to store at least 100 numbers. In
the second case, we need store only seven numbers (-3,-2,-1,0,1,2,3). All
other numbers are computed via linear functions based on these seven. Be-
cause of such compact representation, much less computer memory is
needed. We also can easily compute values of MFs for intermediate points,
which are not included in our 100 points.

A third advantage is the time saved by the expert who has to provide m
values. An expert would have to give answers about elementary probabili-
ties for 200 events in the first case, but for the triangular MFs in Figure 7.19
the expert needs to only give seven numbers. While linguistic variables that
are used in fuzzy inference can be represented by "over complete” or "in-
complete" parameters, the majority of real fuzzy control systems are based
on "‘exact complete" context space (ECCS), as shown in Figure 7.15.
This fact clearly relates to the advantages already noted, as well as with
some others that will be shown below.
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Input-Output Function. Let us show the simplicity of the input-output
function of a CoG max-min inference method based on an ECCS. Such an
input-output function is a quasi-linear, piece-wise function [cf., Kovalerchuk
et al, 1993,1994; Raymond et al, 1993] with fewer nodes than would be re-
quired for "incomplete” and "over complete" context spaces. It also is simi-
lar to a linear function between nodes. Thus, the usual CoG input-output
function can be changed into a piecewise, quasi-linear function, and there-
fore, reject the complicated and heuristic CoG defuzzification procedure
typically applied. Consequently, run-time and cost of fuzzy inference can be
significantly reduced with such changes.

Figures 7.19-7.21 show the three different context spaces in the bottom
and output interpolation functions in the top. The context in Figure 7.19 is
presented with crisp not fuzzy sets. These sets do not overlap. They produce
a step-function as an output. Figure 7.20 presents context with partially
overlapping fuzzy sets. These sets produce a piece-wise linear interpolation
with turning points at the beginning and end of overlapping areas. Figure
7.21 presents overlapping of MFs for exact complete context space (ECCS).
These sets produce a simplest linear interpolation. This interpolation is the
simplest and it is very close to the wave in the same Figure 7.21, which is
the output for CoG max-min fuzzy inference.

- e e

NL NM NS ZR ] PM PL

Figure 7.19. Output function for complete crisp sets context

Figure 7.19 shows a CoG output function for non-overlapping intervals. It is
a simple step function. In this example, any input is presented as an interval
and any output as an exact number. Also, output rules are: "IF argument a is
about zero (ie., [-0.5, +0.5) covers a), THEN output u should be 0"; "IF ar-
gument a is positive small (ie., [+0.5,+1.0) covers a), THEN output u

should be 1". The other rules are formulated similarly. In this simple case,

the fuzzy inference method and the pure interpolation method give the same
output function. Then we do not have a problem choosing one of them.
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A fuzzy output function is presented for partially overlapping fuzzy sets
in Figure 7.20. Here output rules are slightly different. Let us describe one
of them: "IF argument a is positive small THEN output u should be also
positive small". The term "positive small" (PS) for argument a is formalized
with a fuzzy set in the bottom of Figure 7.20. The term "positive small" for
output u is also formalized with a fuzzy set. This fuzzy set is presented
above PS fuzzy set for argument a in Figure 7.20. The next output rule is

[F argument a is positive medium
THEN output u should also be positive medium.

The term "positive medium" (PM) for argument a is formalized with a fuzzy
set in the bottom of Figure 7.20 next to the fuzzy set for PS. The term "posi-
tive medium" (PM) for output u is also formalized with a fuzzy set. This
fuzzy set is presented above the PM fuzzy set for argument a in Figure 7.20.
The other output rules are defined similarly. Figure 7.20 shows that the
fuzzy sets "positive small" and "positive medium" are overlapping on the
part of their supports. Similarly, Figure 7.21 shows MFs with ECCS over-
lapping. Output functions for the fuzzy inference method and the pure inter-
polation are shown above the fuzzy sets. The output function for the fuzzy
inference method has a small wave in the area where PS and PM fuzzy sets
are overlapped. The pure interpolation method gives a straight line in this
area. Out of the overlapping areas, the fuzzy inference method and the pure
interpolation method give the same linear pieces.

—_—

" Defuzzyfied

output function

-
I e AV
%1% %4 5 Y=

NM NS ZR PS PM PL

Figure 7.20. Output function for incomplete fuzzy sets context
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Figure 7.21. Output function for exact complete fuzzy sets context

The difference between these two interpolations in the overlapping area
is described with the direct computational formula [Kovalerchuk, 1996b]:

u=[(1-(p+e)+p(1+e)[2+(1+e- P)V(1-(p+e)+p(1+e)],

where € is the distance between the peak point of PS fuzzy set and the be-
ginning of the PM fuzzy set and p is the distance from the beginning of the
PM fuzzy set to the input point a, for which we compute a value u of the
output function. The last formula is important to show that the difference
between the fuzzy inference and the pure interpolation is no more than
2.07% of the length of the support of the used fuzzy sets for this single input
single output (SISO) case. The pure interpolation method gives a single
straight line. The difference between these two interpolations in the overlap-
ping area is described with the formula with p<0.5:

u=(2-3p’+5p)/2(1- p*+p),

where p is the distance from the beginning of the fuzzy set to the input point
a, for which we compute a value u of the output function [Kovalerchuk,
1996b]. This maximum deviation 2.07% is reached for &=0 and two values
of p: p/=0.197200388 and p,=0.8022799611.

For two inputs and single output (TISO) case the difference between
a fuzzy output function and a pure interpolation is no more than 5.05% of
the support [Kovalerchuk, 1996b]. This study shows how to combine fuzzy
inference and pure interpolation to construct simple output functions. If
fuzzy sets have a large support then the difference between these two inter-
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polations can be significant and the "wave" on Figures 7.20 and 7.21 can be

relatively large. In this case, we need to decide which of the two output
functions (CoG output function or the second interpolation) should be used.

We argue that a piecewise linear interpolation between peak points of fuzzy
sets has an important advantage. We consider an output task where all fuzzy
sets are equal and symmetrical. How can fuzzy logic procedures generate a

wave? How to explain the wave in CoG output function in terms of a par-

ticular applied inference task? There is no such explanation. The only expla-
nation is out of context of the particular task. The source of the wave is CoG
defuzzification procedure. Piecewise linear interpolation between peak
points does not have mis weakness.

Let us summarize. In many applications there is model and relevant data
are very restricted. In this situation, it is practically reasonable to combine
fuzzy inference and pure interpolation methods. Fuzzy inference methods
are used to choose interpolation points and pure interpolation methods are
used to interpolate between these points. With fuzzy inference methods, one
extracts linguistic rules, construct respective fuzzy sets preferably as in Fig-
ure 7.21, identifying their peaks. Then interpolation methods are used to
identify an output function interpolating between these peak points. If the
constructed fuzzy sets meet the above-mentioned requirements, we do not
need CoG procedure to have practically the same output function as CoG
output function.

Figures 7.19-7.21 illustrate conditions when the second interpolation can
simplify a fuzzy inference, thus substituting the fuzzy inference. Some
fuzzy logic practitioners noticed that quite often output of CoG fuzzy infer-
ence and piecewise linear interpolations are very close. We estimated this
difference explicitly in terms of the length of the fuzzy sets for one and two-
dimensional cases. What is new in this study if it is already known? Now the
phenomenon has explanation and conditions are known when this phenome-
non takes place. For instance, 5.05% of the length of the fuzzy set can be
checked if it is too large for a particular application. Therefore, this study
gives a way to evaluate the number of needed linguistic terms for con-
structing fuzzy sets. Next, it explains the reason why CoG fuzzy inference is
effective in very many applications with sufficient training data. If there is
sufficient training data, pure interpolation methods yield satisfactory output
function. Actually, sufficient training data and small deviation is the main
reason that the most common CoG fuzzy inference is acceptable for such
tasks. This is an important theoretical result explaining the source of suc-
cess. The main practical conclusion from this study is that CoG max-min
fuzzy inference can be substituted by a much simpler one, i.e., piecewise
linear interpolation under these conditions.
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Complete number of '"IF-THEN" rules. The number of nodes in-
volved in the input-output function is directly related to the number of "TF-
THEN" rules. To decrease time of design and run-time of the fuzzy infer-
ence we must exclude "over complete" fuzzy sets. However, if we change to
"incomplete" sets, then reliability of the decision will decrease. Furthermore,
some parameter values for "incomplete” contexts have no fuzzy sets and no
"IF-THEN" rules. We will consider these points below in discussing the re-
liability issue.

Reliability of the output of modified CoG inference. An output mem-
bership function value measures reliability of fuzzy rule inference. That is,
small value of MF indicates an unreliable conclusion. Such conclusion is too
risky to be used. This statement is true only if the output MF is well-
founded, otherwise such MF’s value can mislead a user to discard a valuable
conclustion (discovery). In fuzzy inference, CoG defuzzification procedure
computes the output MF with Center-of-Gravity of the area:

[fu.m*(u)du)/fm*(u)du,

where m*(u) = [m(wWNL) OR m(w/NS)] = max[m(u/NL), m(u/NS)]. This
function is just one of the possible alternatives, which should be justified.
On the other hand, if m(u/NL) and m(u/NS) are obtained using jointly the
approach of ECCS and fuzzy statistics (Section 7.6.3 and 7.64), a well-
founded formula for m* exists -- it is simply the sum, i.e.,

m*(u) = m(w/NL) + m(w/NS).

Note that m(u/NL) + m(u/NS) 2 max{m(w/NL), m(w/NS)]. Thus, the modi-
fied CoG inference based on ECCS produces a greater value of the output
MF than the usual CoG inference based on the same ECCS. Therefore, the
modified CoG inference has better capabilities to produce reliable conclu-
sions.

7.8.  Fuzzy logic in finance

7.8.1. Review of applications of fuzzy logic in finance

This section covers a number of successful applications of fuzzy logic in
finance. For example, Yamaichi Secretes of Tokyo uses fuzzy logic to make
decisions for an investment fund, and Nikko Secretes of Yokohama uses a
NeuroFuzzy system for a bond rating program [Houlder, 1994]. Several
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authors noticed that many financial institutions consider their systems based

on fuzzy logic a proprietary technology and do not publicize details, or even

the fact of implementation and use [Lee, Smith, 1995; Von Altrock, 1997].

However, many uses of fuzzy logic in finance are published in the literature,

including those listed below:

— Foreign-exchange trade support system in Japan with approximately
5000 fuzzy rules derived from a backpropagation neural network [Rao,
Rao, 1993]. Fuzzy logic has been used in a foreign exchange trading
system to predict the Yen-Dollar exchange rate [Yuize, 1991].

— Analysis of market psychology using a fuzzy expert system with data
fuzzification and evaluation [Deny, 1993].

— Insider Trading Surveillance [Moulder, 1994].

— Fuzzy logic and variables in investing and trading [Caldwell, 1994].

— Neural network and fuzzy logic hybrid system in finance [Derry, 1994,
WongF, 1994].

— Interpretation of neural network outputs using fuzzy logic, a fuzzy expert
system is applied to the task of interpreting multiple outputs from a neu-
ral network designed to generate signals for trading the S&P 500 index
[Caldwell, 1994b].

— A portfolio insurance strategy of Japanese stocks based on Nikkei Stock
Index Futures using fuzzy logic. The system assists in deciding when to
rebalance the replicating portfolio [Kay-Hwang and Woon-Seng Gan,
1996].

— Financial modeling and forecasting using a hybrid Neural-Fuzzy system.
The model’s performance is compared with a random walk model, an
ARIMA model, and a variety of regression models [Pan et al, 1997].

— Fuzzy Scoring for Mortgage Applicants.

— Creditworthiness Assessment and Fraud Detection.

— Investor Classification [Von Altrock, 1997].

— Cash Supply Optimization [Von Altrock, 1997].

— Prediction of stock market direction using fuzzy logic [Von Altrock,
1997]

— Rating bonds [Loofbourrow, Loofbourrow, 1995].

Some other applications of fuzzy logic in finance are presented in [Jans-
sen, Ruelas 1996; Rast, 1997, 1999; Golan, Edwards, 1993; Hiemstra, 1994;
Severwright, 1997; Lee, Smith 1995; Kim et al., 1998; Sun, Wu, 1996;
Wang, 1993]. Some of the mentioned works are described below.

Investor Classification. Many investment institutions classify customers
and investments into three risk groups:

a) conservative and security-oriented (risk shy),

b) growth-oriented and dynamic (risk neutral), and

c¢) chance-oriented and progressive (risk happy).
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The fuzzy logic system was designed to evaluate how well a customer
fits into these three groups. Each customer was represented by the set of 25
answers. Each question represents an attribute with five values from 1 to 5.
The questions include personal background (age, martial state, number of
children, job type, education type, etc.) the customer’s expectation from an
investment (capital protection, tax shelter, liquid assets, etc.) and others
[Von Altrock, 1997].

Insider Trading Surveillance. Houlder [1994] describes a system de-
veloped for the London Stock Exchange. The goal of the system is to auto-
matically detect insider dealing and market manipulation using a combina-
tion of fuzzy logic, neural nets, and genetic algorithms. The system tries to
detect suspicious rings of individuals with several accounts in a vast amount
of electronic camouflage.

Foreign Exchange Trading. Fuzzy logic has been used to predict the
Yen-Dollar exchange rate [Yuize, 1991]. The system uses fuzzy logic rules
to make inferences based on economic news events that may affect the cur-
rency market. This news is "translated" into the fuzzy logic system’s input
format by domain experts.

Cash Supply Optimization [Von Altrock, 1997]. Banks are interested
in reaching two contradictory goals for each branch and ATM:

1. minimize unused cash and

2. minimize the rate of out of cash situations.

Cash surplus could be used for other profitable operations or/and decrease
the cost of cash supply for branches and ATM. On the other hand, if the
bank is able to minimize out of cash situations, it can better compete with
other banks. The traditional expert solution is to set the minimum amount
of cash for each branch and ATM. However, this minimum is not static,
bank business conditions are changed dynamically for each individual
branch and ATM due to:

— seasonal factors (week, month, year) and

— environmental factors (new shops, offices, banks nearby and so on)
Suppose the bank takes into account five such factors with only two values
for each of them. This means that the bank should analyze regularly 1000*2*
=32000 alternatives to set up minimum amount of cash for its 1000 units.

“In a project of a European bank, fuzzy logic was used to recompute the
minimum cash amount of each branch and ATM daily. The system was able
to reduce the average cash supply in the branches and ATMs by 7.1% with-
out increasing the rate of situations where the branch or ATM ran out of
cash. For a bank with about 450 branches and 1270 ATMs, this results in an
average total of $3.8M less in cash supply” [Von Altrock, 1997].
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Figure 7.22. Fuzzy logic based system for trading

The system is based on three sources of information:

1) the past cash flow of the branches and ATMs,

2) the lowest cash amount suggested by the bank experts for each unit,

3) classification of ATMs and branches according to the properties of the
neighborhoods.

Stock evaluation for trading linked to an online brokering system.
This system uses a similar approach for the technical analysis of stocks (see
chapter 1). However, the buy/hold/sell strategy relies also on the fundamen-
tal position of the stock-issuing company and the situation of similar com-
panies. Figure 7.22 shows the structure of the implemented fuzzy logic

system for trading which evaluates about 1500 stocks in less than a minute
[Van Altrock, 1997].

7.82. Fuzzy logic and technical analysis

In Section 7.1, different aspects of a fuzzy logic system for trading were
discussed. In particular rules related to inference of trading environment
from interest rate and trade fee were presented. In this section, we present a
general design of that system built on technical analysis information - vari-
ous stock market trend indicators. Two decision-making characteristics were
generated for the each stock [Von Altrock, 1997]:

— tradingsuitabilityratingand
— assessment of how well the considered stock fits with the scope of a par-
ticular fund.

The first indicator is based on the forecast of current stock direction
(up/down) and the second indicator is based on a description of stock cate-
gories suitable for a given fund and a type of stock-issuing company. There-
fore, there are two problems solved:
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— developingevaluationindicesand
— generating a trading signal (buy/sell/hold) for each stock and fund.

The solution uses a fuzzy logic linguistic rule-based approach for both
problems, assuming that a financial expert can produce linguistic rules, e.g.,

IF there is high probability that the stock X is going up AND it fits well
to the scope of the fund THEN buy stock X almost certainly.

IF there is extremely high probability that the stock X is going up AND
it rather does not fit to the scope of the fond THEN buy stock X certainly.

IF there are very good chances that the stock is going up AND it fits
very well to the scope of the fund THEN buy stock X certainly.

IF there are very low chances that the stock X is going up AND it fits
very well to the scope of the fund THEN consider sell or hold stock X.

IF there are some chances that the stock X is going up AND it fits very
well to the scope of the fund THEN it is very risky to buy stock X.

On a conceptual level this fuzzy logic system uses numerical indicators
and evaluation functions (membership functions of fuzzy sets) to represent
linguistic categories such as good chances. In addition, a fuzzy logic infer-
ence mechanism is used to get a buy/hold/sell signal with different degrees
of confidence. A numerical indicator serves as a base scale for the linguistic
concept and a membership function of a fuzzy set serves as a formal pres-
entation of uncertain linguistic concepts within this scale.

In [Von Altrock, 1997] two indicators are chosen for the stock market
trend: the Directional Movement Indicator (DMI) and Average Directional
Movement (ADX) indicator, which is derivable from the first one. These
indicators, together with the trends of.the day, are used to represent the
scales for informal linguistic concepts. Six concepts are considered:

— High chance that the stock will go up,

Medium chance that the stock will go up,

Low chance that the stock will go up,

High chance that the stock will go down,

Medium chance that the stock will go down,

— Low chance that the stock will go down.

Data. System uses indicators and indices based on stock price and volume:

1. Number of past days for which interest has to be computed.

2. Difference between today’s closing highest stock price and closing price
of the last trading day.

3. Difference between today’s closing stock price and last trading day’s.

4. Parameter (D4). Today’s highest stock price minus the closing price of
last trading day’s. The value is zero if the closing price of the last trading
day is lower than today’s highest price.
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5. Parameter (DS). Today’s lowest stock price minus the closing price of
the last trading day. The value is zero if the closing price of the last trade
day is lower than today’s lowest price.

6. True Range (TR) defined as the largest of: (a) the distance between to-
day’s high and today’s low, (b) the distance between today’s high and
last trading day’s close, or (c) the distance between today’s low and last
trading day’s close.

7. T-day average of parameter #4.

8. 7-day average of parameter #5.

9. 7-day average of parameter #6.

10. Positive directional indicator (+DI), computed as D4/TR (see 4 and 6).

11. Negative directional indicator (-DI), computed as DS/TR (see 5 and 6).

12. Intermediate value to compute ADX, DIdif7=abs((+DI7)-(-DI7))).

13.Intermediate value to compute ADX, DIsum=(+DI7)+(-DI7).

14. Intermediate value to compute ADX, DX7=DIsum/DIdiff7.

15.Average directional indicator, ADX, computed as the seven-day aver-
age of DX7 (the membership functions for directional indicator is pre-
sented in figure 7.23).

16. Interest rate of the market rate account.

17. Trade fee rate.

Linguistic rules. Below we present some linguistic rules from the system

implemented in [Von Altrock, 1997]. Trend direction rules:
IF the positive directional indicator is low and negative directional
indicator (-DI) is high THEN the stock direction is negative.
IF the positive directional indicator is high and negative directional
indicator is high THEN there is no stock trend. IF the interest rate is
low and trade fee is low or significant
THEN <trading> environment is positive.
IF the interest rate is high and trade fee is significant
THEN <trading> environment is negative.

Trading (buy/hold/tell) rules
IF the average directional indicator is high and direction is positive
THEN buy.
IF the average directional indicator is high and there is no trend
THEN hold.
IF the direction is negative and the environment is negative
THEN sell.
The five variables (positive and negative directional indicators, average
directional indicator, interest rate and trade fee) form input variables of this
fuzzy logic system. The output variable, stock, has only the three values

“buy”(1), “hold”(0) and “sell”(-1) after defuzzification.



284 Chapter 7

11
’ - .
\ Fa¥ I

0e
08 A 0 Y ; ]
o7 N[ 7
08 A7 L
05 ¥ Vi
04 AN
03 FARY P
02 N f ]
0.1 ¥ N=F X
0 Fi LY L%

12 1 24 2 40 units

Figure 7.23. Directional indicator

Three rule blocks are used to produce the final solution (figure 7.24).
The final rule block computes the value of a stock by analyzing trend
strength, trend direction, and environment. The trend strength is presented
by the average directional indicator. Trend direction is computed by another
rule block from the positive and negative directional indicators. Trading en-
vironment 1S computed by a third rule block from the interest rate and trade
fee variables. The trading environment assessment indicates the attractive-
ness of putting money in a market rate account.

Profit. The system uses the following mechanism to generate profit:

) stock investment, if signal =1 (Bu
mvestment = . § Y).
market rate account investment, if signal = —1(Sell)
Block of fuzzy rules #1
Evaluation of trading Block ut ey toleady
environment
=
Block of fuzzy rules #2 f::::::;:‘:;i
Evaluation of =

trend direction

Figure 7.24. Blocks of fuzzy rules

Van Altrock [1997] noted that even this fuzzy logic system can not guar-
antee a successful investment, the profit rate of 18.92% using fuzzy logic
was significantly higher than the fixed interest rate of 7% on the market rate
account.
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